Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36835556

RESUMO

Intricate relationships between transport phenomena, reaction mechanisms, and mechanical aspects likely affect the durability of solid oxide fuel cell (SOFC) stack. This study presents a modeling framework that combines thermo-electro-chemo models (including the methanol conversion process and the electrochemical reactions of the carbon monoxide as well as the hydrogen) and a contact thermo-mechanical model that considers the effective mechanical properties of composite electrode material. Detailed parametric studies are performed focusing on the inlet fuel species (hydrogen, methanol syngas) and flow arrangements (co-flow, counter-flow) under typical operating conditions (operating voltage 0.7 V), and performance indicators of the cell, such as the high-temperature zone, current density, and maximum thermal stress were discussed for parameter optimization. The simulated results show that the high temperature zone of the hydrogen-fueled SOFC is located at the central part of units 5, 6, and 7, and the maximum value is about 40 K higher than that of methanol syngas-fueled SOFC. The charge transfer reactions can occur throughout the cathode layer. The counter-flow improves the trend of the current density distribution of hydrogen-fueled SOFC, while the effect on the current density distribution of methanol syngas-fueled SOFC is small. The distribution characteristics of the stress field within SOFC are extremely complex, and the inhomogeneity of the stress field distribution can be effectively improved by feeding methanol syngas. The counter-flow improves the stress distribution state of the electrolyte layer of methanol syngas-fueled SOFC, and the maximum tensile stress value is reduced by about 37.7%.


Assuntos
Metanol , Óxidos , Óxidos/química , Hidrogênio/química , Água , Eletrodos
2.
Langmuir ; 38(47): 14508-14516, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36377419

RESUMO

Doubly re-entrant surfaces inspired by springtails exhibit excellent repellency to low-surface-tension liquid. However, the flexible doubly re-entrant surfaces are difficult to fabricate, especially for the overhang of the structure. Herein, we demonstrate a simple Fresnel aperture diffraction modulation strategy in microscale lithography coupled with a molding process to obtain the flexible doubly re-entrant superomniphobic surfaces with nanoscale overhangs. The negative nanoscale overhang features were formed in a single-layer photoresist due to the fine-modulation of the optical intensity fluctuation of the Fresnel aperture diffraction. The as-prepared flexible non-fluorinated polydimethylsiloxane (PDMS) doubly re-entrant microstructure based on the Fresnel aperture diffraction (D-BF) surface (without any additional treatments) could repel ethanol droplets (21.8 mN m-1) in the Cassie-Baxter state. The robust nanoscale overhangs obtained by the molding process enable the maximum breakthrough pressure for the low-surface-tension ethanol droplets on the D-BF surfaces up to about 230 Pa, allowing ethanol liquids with Weber numbers up to 8.7 to fully bounce off. The fabricated non-fluorinated D-BF superomniphobic surface maintains outstanding liquid repellency after the surface wettability modification and deformation test.

3.
ACS Appl Mater Interfaces ; 14(34): 39665-39672, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35983670

RESUMO

Flexible superomniphobic doubly re-entrant (Dual-T) microstructures inspired by springtails have attracted growing attention due to their excellent liquid-repellent properties. However, the simple and practical manufacturing processes of the flexible Dual-T microstructures are urgently needed. Here, we proposed a one-step molding process coupled with the lithography technique to fabricate the elastomeric polydimethylsiloxane (PDMS) Dual-T microstructure surfaces with high uniformity. The angle between the downward overhang and the horizontal direction could reach 90° (vertical overhang). The flexible superomniphobic Dual-T microstructure surfaces, without fluorination treatment and physical treatments, could repel liquids with a surface tension lower than 20 mN m-1 in the Cassie-Baxter state. Owing to the excellent robustness of the one-step molding downward overhanging, the max breakthrough pressure of this surface could reach up to 164.3 Pa for ethanol droplets. Furthermore, the flexible superomniphobic Dual-T surface allowed impinging ethanol droplets to completely rebound at the Weber number up to 7.1 with an impact velocity of ∼0.32 m s-1. The Dual-T microstructure surface maintained excellent superomniphobicity even after surface oxygen plasma treatment and exhibited excellent structural robustness and recoverability to various large mechanical deformations.

4.
Int J Hyg Environ Health ; 231: 113638, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33080524

RESUMO

Evidence concerning short-term acute association between air pollutants and hospital admissions for respiratory diseases among children in a multi-city setting was quite limited. We conducted a time-series analysis to evaluate the association of six common air pollutants with hospital admissions for respiratory diseases among children aged 0-14 years in 4 cities (Guangzhou, Shanghai, Wuhan and Xining), China during 2013-2018. We used generalized additive models incorporating penalized smoothing splines and random-effect meta-analysis to calculate city-specific and pooled estimates, respectively. The exposure-response relationship curves were fitted using the cubic spline regression. Subgroup analyses by gender, age, season and disease subtype were also performed. A total of 183,036 respiratory diseases hospitalizations were recorded during the study period, and 94.1% of the cases were acute respiratory infections. Overall, we observed that increased levels of air pollutants except O3, were significantly associated with increased hospital admissions for respiratory disease. Each 10 µg/m3 increase in PM2.5, SO2 and NO2 at lag 07, PM10 at lag 03 and per 1 mg/m3 increase in CO at lag 01 corresponded to increments of 1.19%, 3.58%, 2.23%, 0.51% and 6.10% in total hospitalizations, respectively. Generally, exposure-response relationships of PM2.5 and SO2 in Guangzhou, SO2, NO2 and CO in Wuhan, as well as SO2 and NO2 in Xining with respiratory disease hospitalizations were also found. Moreover, the adverse effects of these pollutants apart from PM2.5 in certain cities remained significant even at exposure levels below the current Chinese Ambient Air Quality Standards (CAAQS) Grade II. Children aged 4-14 years appeared to be more vulnerable to the adverse effects of PM2.5, SO2 and NO2. Furthermore, with the exception of O3, the associations were stronger in cold season than in warm season. Short-term exposure to PM2.5, SO2, NO2 and CO were associated, in dose-responsive manners, with increased risks of hospitalizations for childhood respiratory diseases, and adverse effects of air pollutants except PM2.5 held even at exposure levels below the current CAAQS Grade II in certain cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Infecções Respiratórias , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Criança , China/epidemiologia , Cidades , Hospitalização , Hospitais , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Infecções Respiratórias/epidemiologia
5.
Nanotechnology ; 31(47): 475601, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32885792

RESUMO

The development of multi-role flexible thermal films embedded with single-walled carbon nanotubes (SWCNTs) exhibiting an adjustable temperature coefficient of resistance (TCR) is presented. The composite film is prepared by an alternating electric field to assembling CNTs on Ni conductive layer and polyimide. Modified vacuum thermal treatment is then conducted to adjust the TCR behavior of films, thereby gaining the positive, negative and near-zero TCR ranging from -1.5% °C-1 to nearly 1.0% °C-1 at different annealing conditions, respectively. The changes of morphologies, tube crystallinity and chemical elements in films are investigated. The enhanced intertube couplings in bundles of CNTs, formations of chemical bonds and recrystallization in heat-treated films, resulting in the change of charge transport, play a dominant role in the evolution of the TCR behavior. Heat-treated films also exhibit linear temperature dependence and high stability while operating at wide ambient temperature, leading to broad prospects in flexible electronic thermal applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...