Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(5): 4135-4143, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38226650

RESUMO

It is well known that the traditional buckypaper (BP) is composed of a certain number of short carbon nanotubes (CNTs) intertwined with each other and sliding always happens when the BP is under tensile and impact loading, which results in inferior mechanical properties compared to single CNTs. In this work, a highly-entangled single-wire BP (SWBP) structure is constructed by a modified self-avoiding random walk approach. The in-plane mechanical properties and impacting behaviors of the SWBPs with different entanglement degrees and interface frictions are systematically investigated via newly developed coarse-grained molecular dynamics (CGMD) simulation. A coarse-grained method can effectively reflect the inter-tube van der Waals (vdW) interactions and the mechanical behaviors of CNTs, including tension, bending and adhesion. In this work, from the tensile simulations of the SWBP, the results showed that the self-locking mechanism between entangled CNTs could significantly enhance the tensile resistance of the film. Besides, the mechanical properties of the SWBP are highly dependent on the entanglement degree and the interface friction between CNTs. Furthermore, two distinct fracture modes, ductile fracture and brittle fracture, are revealed, which can be efficiently controlled by changing the related friction between CNTs. From the impacting simulations, it is found that the impacting performance can be effectively tuned by adjusting the entanglement degree of the film. In addition, the kinetic energy of the projectile could be rapidly dissipated through the stretching and bending of CNTs in the SWBP. This work provides an in-depth understanding of the effect of interface friction and entanglement degree on the mechanical properties of the buckypaper and provides a reference for the preparation of strong CNT-based micromaterials.

2.
Quant Imaging Med Surg ; 13(9): 5653-5663, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37711769

RESUMO

Background: 18F-fluorodeoxyglucose positron emission tomography-computerized tomography (18F-FDG PET-CT) has demonstrated high sensitivity in the diagnosis of autoimmune pancreatitis (AIP) and pancreatic ductal adenocarcinoma (PDAC), while also exhibiting the ability to distinguish AIP from PDAC lesions. The objective of this investigation was to assess the efficacy of multiparametric 18F-FDG PET with serological examination for distinguishing focal AIP (f-AIP) from PDAC. Methods: A total of 127 patients (43 with f-AIP and 84 with PDAC) who received 18F-FDG PET-CT before treatment were retrospectively included in the cohort study conducted at two centers, Beijing Friendship Hospital and Chinese PLA General Hospital, from January 2015 to December 2021. The baseline characteristics and clinical data were collected. The metabolism parameters of 18F-FDG PET, including maximum standardized uptake value (SUVmax), tumor-to-normal liver SUV ratio (SUVR), mean SUV (SUVmean), total lesion glycolysis (TLG), and metabolic tumor volume (MTV) were evaluated. The area under the receiver operating characteristic (ROC) curve was used to evaluate the differential diagnostic efficacy. The diagnostic efficacy improvement was assessed through the integrated discriminatory improvement (IDI), net reclassification improvement (NRI), and DeLong test. Results: Serum immunoglobulin G4 (IgG4) >280 mg/dL, carbohydrate antigen 19-9 (CA19-9) <85 U/mL, and metabolic parameters differed significantly between patients with f-AID and PDAC. The ROC curve analysis of MTV showed the highest differentiating diagnostic value [sensitivity =0.814, 95% confidence interval (CI): 0.661-0.911; specificity =0.893, 95% CI: 0.802-0.947; area under the curve (AUC) =0.890, 95% CI: 0.820-0.957]. The combined diagnostics model of serum IgG4 >280 mg/dL, CA19-9 <85 U/mL, and MTV resulted in the highest AUC of 0.991 (95% CI: 0.978-1.000; sensitivity =0.953, 95% CI: 0.829-0.992; specificity =0.964, 95% CI: 0.892-0.991). Conclusions: The multiparameter diagnostic model based on 18F-FDG PET and serological examination has excellent clinical value in the differential diagnosis of f-AID and PDAC.

3.
Front Immunol ; 14: 1124482, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292215

RESUMO

Patients with advanced intrahepatic cholangiocarcinoma (iCCA) often have a poor prognosis. Recent advancements in targeted molecular therapy and immunotherapy have been made. Herein, we report a case of advanced iCCA treated with a combination of pemigatinib (a selective FGFR inhibitor), chemotherapy, and an immune checkpoint inhibitor. A 34-year-old female was diagnosed with advanced iCCA with multiple liver masses and metastases in the peritoneum and lymph nodes. Next-generation sequencing (NGS) identified the genetic mutations. An FGFR2-BICC1 gene fusion was found in this patient. The patient was treated with pemigatinib in combination with pembrolizumab plus systemic gemcitabine and oxaliplatin. After 9 cycles of the combination therapy, the patient achieved a partial response, complete metabolic response, and normalization of tumor markers. Sequentially, the patient received pemigatinib and pembrolizumab for 3 months. Due to the elevated tumor biomarker, she is currently receiving chemotherapy, pemigatinib, and pembrolizumab treatment again. She regained an excellent physical status after 16 months of treatment. To the best of our knowledge, this was the first reported case of advanced iCCA successfully treated with a combination of pemigatinib, chemotherapy, and ICIs as a first-line regimen. This treatment combination may be effective and safe in the advanced iCCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Feminino , Humanos , Adulto , Inibidores de Checkpoint Imunológico/uso terapêutico , Colangiocarcinoma/genética , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia
5.
Front Immunol ; 13: 1052768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405738

RESUMO

As a regulatory subunit of cyclin kinase, CKS1B promotes cancer development and is associated with poor prognosis in multiple cancer patients. However, the intrinsic role of CKS1B in pancreatic cancer remains elusive. In our research, CKS1B expression in pancreatic tumor tissue was higher than that in normal tissue by TCGA, Oncomine and CPTAC databases analysis. Similar result was verified in our center tissues by qRT-PCR. CKS1B expression was closely relevant to histologic grading, prognosis, and TMB. GSEA showed that CKS1B mainly participated in the regulation of autophagy and T cell receptor signaling pathway. Furthermore, CIBERSORT analysis showed that there was a strong correlation between CKS1B expression and tumor immune cells infiltration. Drug sensitivity analysis showed that patients with high CKS1B expression appeared to be more sensitive to gemcitabine, 5-fluorouracil, and paclitaxel. We then investigated cell viability and migratory ability by CCK8 and transwell assay, respectively. Results indicated that CKS1B knockdown by short hairpin RNA significantly reduced pancreatic cancer cell viability and invasion via regulating PD-L1 expression. In conclusion, our research further demonstrates the role of CKS1B in pancreatic cancer and the signaling pathways involved. The association of CKS1B with immune infiltration and immune checkpoint may provide a new direction for immunotherapy of pancreatic cancer.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Neoplasias Pancreáticas , Humanos , Prognóstico , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Imunoterapia , Fatores Imunológicos , Biomarcadores , Quinases relacionadas a CDC2 e CDC28/genética , Neoplasias Pancreáticas
6.
Discov Oncol ; 13(1): 83, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36006549

RESUMO

PURPOSE: Pancreatic cancer is one of the deadliest cancers worldwide. The extracellular matrix (ECM) microenvironment affects the drug sensitivity and prognosis of pancreatic cancer patients. This study constructed an 8-genes pancreatic ECM scoring (PECMS) model, to classify the ECM features of pancreatic cancer, analyze the impact of ECM features on survival and drug sensitivity, and mine key molecules that influence ECM features in pancreatic cancer. METHODS: GSVA score calculation and clustering were performed in TCGA-PAAD patients. Lasso regression was used to construct the PECMS model. The association between PECMS and patient survival was analyzed and validated in the CPTAC-3 dataset of TCGA and our single-center retrospective cohort. The relationships between PECMS and features of the matrix microenvironment were analyzed. Finally, PECMS feature genes were screened and verified in pancreatic cancer specimens to select key genes associated with the ECM microenvironment. RESULT: The survival of the PECMS-high group was significantly worse. The PECMS-high group showed higher oxidative stress levels, lower levels of antigen presentation- and MHC-I molecule-related pathways, and less immune effector cell infiltration. Data from IMvigor-210 cohort suggested that PECMS-low group patients were more sensitive to immune checkpoint blockers. The PECMS score was negatively correlated with chemotherapy drug sensitivity. The negative association of PECMS with survival and drug sensitivity was validated in our retrospective cohort. KLHL32 expression predicted lower oxidative stress level and more immune cells infiltrate in pancreatic cancer. CONCLUSION: PECMS is an effective predictor of prognosis and drug sensitivity in pancreatic cancer patients. KLHL32 may play an important role in the construction of ECM, and the mechanism is worth further study.

7.
BMC Med Genomics ; 14(1): 298, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930241

RESUMO

BACKGROUND: Mutation processes leave different signatures in genes. For single-base substitutions, previous studies have suggested that mutation signatures are not only reflected in mutation bases but also in neighboring bases. However, because of the lack of a method to identify features of long sequences next to mutation bases, the understanding of how flanking sequences influence mutation signatures is limited. METHODS: We constructed a long short-term memory-self organizing map (LSTM-SOM) unsupervised neural network. By extracting mutated sequence features via LSTM and clustering similar features with the SOM, single-base substitutions in The Cancer Genome Atlas database were clustered according to both their mutation site and flanking sequences. The relationship between mutation sequence signatures and clinical features was then analyzed. Finally, we clustered patients into different classes according to the composition of the mutation sequence signatures by the K-means method and then studied the differences in clinical features and survival between classes. RESULTS: Ten classes of mutant sequence signatures (mutation blots, MBs) were obtained from 2,141,527 single-base substitutions via LSTM-SOM machine learning approach. Different features in mutation bases and flanking sequences were revealed among MBs. MBs reflect both the site and pathological features of cancers. MBs were related to clinical features, including age, sex, and cancer stage. The class of an MB in a given gene was associated with survival. Finally, patients were clustered into 7 classes according to the MB composition. Significant differences in survival and clinical features were observed among different patient classes. CONCLUSIONS: We provided a method for analyzing the characteristics of mutant sequences. Result of this study showed that flanking sequences, together with mutation bases, shape the signatures of SBSs. MBs were shown related to clinical features and survival of cancer patients. Composition of MBs is a feasible predictive factor of clinical prognosis. Further study of the mechanism of MBs related to cancer characteristics is suggested.


Assuntos
Mutação de Sentido Incorreto , Aprendizado de Máquina não Supervisionado , Algoritmos , Análise por Conglomerados , Humanos , Mutação
8.
Oncogene ; 37(50): 6399-6413, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30068940

RESUMO

Nuclear-enriched RNA-binding proteins (RBPs) are mainly involved in transcriptional regulation, which is a critical checkpoint to tune gene diversity and expression levels. We analyzed nuclear RBPs in human HCC tissues and matched normal control tissues. Based on the gene expression levels, PTBP3 was identified as top-ranked in the nuclei of HCC cells. HCC cell lines then were transfected with siRNAs or lentiviral vectors. PTBP3 promoted HCC cell proliferation and metastasis both in vitro and in vivo. RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) and qRT-PCR assays verified that PTBP3 protein recruited abundant lnc-NEAT1 splicing variants (NEAT1_1 and NEAT1_2) and pre-miR-612 (precursor of miR-612) in the nucleus. NEAT1_1, NEAT1_2 and miR-612 expression levels were determined by PTBP3. Correlational analyses revealed that PTBP3 was positively correlated with NEAT1, but it was inversely correlated with miR-612 in HCC. The P53/CCND1 and AKT2/EMT pathways were determined by NEAT1 and miR-612 respectively in HCC. The PTBP3high and NEAT1high/miR-612low patients had a shorter overall survival. Therefore, nuclear-enriched RBP, PTBP3, promotes HCC cell malignant growth and metastasis by regulating the balance of splicing variants (NEAT1_1, NEAT1_2 and miR-612) in HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Longo não Codificante/genética , Animais , Carcinoma Hepatocelular/metabolismo , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo
9.
Xenotransplantation ; 24(5)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28714241

RESUMO

BACKGROUND: Pig-to-nonhuman primate orthotopic liver xenotransplantation is often accompanied by thrombocytopenia and coagulation disorders. Furthermore, the release of cytokines can trigger cascade reactions of coagulation and immune attacks within transplant recipients. To better elucidate the process of inflammation in liver xenograft recipients, we utilized a modified heterotopic auxiliary liver xenotransplantation model for xeno-immunological research. We studied the cytokine profiles and the relationship between cytokine levels and xenograft function after liver xenotransplantation. METHODS: Appropriate donor and recipient matches were screened using complement-dependent cytotoxicity assays. Donor liver grafts from α1,3-galactosyltransferase gene-knockout (GTKO) pigs or GTKO pigs additionally transgenic for human CD47 (GTKO/CD47) were transplanted into Tibetan macaques via two different heterotrophic auxiliary liver xenotransplantation procedures. The cytokine profiles, hepatic function, and coagulation parameters were monitored during the clinical course of xenotransplantation. RESULTS: Xenograft blood flow was stable in recipients after heterotopic auxiliary transplantation. A Doppler examination indicated that the blood flow speed was faster in the hepatic artery (HA) and hepatic vein (HV) of xenografts subjected to the modified Sur II (HA-abdominal aorta+HV-inferior vena cava) procedure than in those subjected to our previously reported Sur I (HA-splenic artery+HV-left renal vein) procedure. Tibetan macaques receiving liver xenografts did not exhibit severe coagulation disorders or immune rejection. Although the recipients did suffer from a rapid loss of platelets, this loss was mild. In blood samples dynamically collected after xenotransplantation (post-Tx), dramatic increases in the levels of monocyte chemoattractant protein 1, interleukin (IL)-8, granulocyte-macrophage colony-stimulating factor, IL-6, and interferon gamma-induced protein 10 were observed at 1 hour post-Tx, even under immunosuppression. We further confirmed that the elevation in individual cytokine levels was correlated with the onset of graft damage. Finally, the release of cytokines might contribute to leukocyte infiltration in the xenografts. CONCLUSION: Here, we established a modified auxiliary liver xenotransplantation model resulting in near-normal hepatic function. Inflammatory cytokines might contribute to early damage in liver xenografts. Controlling the systemic inflammatory response of recipients might prevent early post-Tx graft dysfunction.


Assuntos
Citocinas/sangue , Galactosiltransferases/sangue , Transplante de Fígado , Transplante Heterólogo , Animais , Animais Geneticamente Modificados , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Técnicas de Inativação de Genes , Rejeição de Enxerto/imunologia , Xenoenxertos , Terapia de Imunossupressão , Fígado/imunologia , Macaca , Suínos , Tibet , Transplante Heterólogo/métodos , Transplantes/imunologia
10.
Tumour Biol ; 39(7): 1010428317709127, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28714366

RESUMO

Hepatocellular carcinoma is one of the most prevalent neoplasms and the leading cause of cancer-related mortality worldwide. Mitochondrial ribosomal protein S23 is encoded by a nuclear gene and participates in mitochondrial protein translation. Mitochondrial ribosomal protein S23 overexpression has been found in many types of cancer. In this study, we explored mitochondrial ribosomal protein S23 expression in primary hepatocellular carcinoma tissues compared with matched adjacent non-tumoral liver tissues using mitochondrial ribosomal protein S23 messenger RNA and protein levels collected from public databases and clinical samples. Immunohistochemistry was performed to analyze the relationship between mitochondrial ribosomal protein S23 and various clinicopathological features. The results indicated that mitochondrial ribosomal protein S23 was significantly overexpressed in hepatocellular carcinoma. High mitochondrial ribosomal protein S23 expression was correlated with the tumor size and tumor-metastasis-node stage. Moreover, patients with high mitochondrial ribosomal protein S23 expression levels presented poorer survival rates. Mitochondrial ribosomal protein S23 was an independent prognostic factor for survival, especially at the early stage of hepatocellular carcinoma. In addition, the downregulation of mitochondrial ribosomal protein S23 decreased the proliferation of hepatocellular carcinoma in vitro and in vivo. In conclusion, we verified for the first time that mitochondrial ribosomal protein S23 expression was upregulated in hepatocellular carcinoma. High mitochondrial ribosomal protein S23 levels can predict poor clinical outcomes in hepatocellular carcinoma, and this protein plays a key role in tumor proliferation. Therefore, mitochondrial ribosomal protein S23 may be a potential therapeutic target for hepatocellular carcinoma.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas Mitocondriais/genética , Proteínas Ribossômicas/genética , Adulto , Idoso , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico
11.
Cancer Med ; 6(8): 1941-1951, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28675698

RESUMO

Autophagy is a life phenomenon in which autophagosomes remove damaged or aging organelles and long-lived circulating proteins to maintain the cell's stability. However, disorders of excessive autophagy are a response of cancer cells to a variety of anticancer treatments which lead to cancer cell death. The Akt/mammalian target of rapamycin (mTOR) and the extracellular signal-regulated kinase 1/2 (ERK1/2) pathways are both involved in nutrient-induced autophagic phenomenon and exhibit vital relevance to oncogenesis in various cancer cell types, including hepatocellular carcinoma (HCC). However, the influence of autophagy for cancer cell death remains controversial and few scientists have investigated the variation of these two signaling pathways in cancer cell autophagic phenomenon induced by anticancer treatment simultaneously. Here, we explored the anticancer efficacy and mechanisms of glycyrrhizin (GL), a bioactive compound of licorice with little toxicity in normal cells. It is interesting that inhibition of Akt/mTOR signaling in concurrence with enhanced ERK1/2 activity exists in GL-induced autophagy and cytotoxicity in HepG2 and MHCC97-H hepatocellular carcinoma cells. These results imply that the GL-related anticancer ability might correlate with the induction of autophagy. The influence of induced autophagic phenomenon on cell viability might depend on the severity of autophagy and be pathway specific. In the subsequent subcutaneous xenograft experiment in vivo with MHCC97-H cells, GL obviously exhibited its inhibitory efficacy in tumor growth via inducing excess autophagy in MHCC97-H cells (P < 0.05). Our data prompt that GL possesses a property of excess autophagic phenomenon induction in HCC and exerts high anticancer efficacy in vitro and in vivo. This warrants further investigation toward possible clinical applications in patients with HCC.


Assuntos
Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Ácido Glicirrízico/farmacologia , Neoplasias Hepáticas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Ácido Glicirrízico/química , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Lett ; 397: 33-42, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28288874

RESUMO

Cancer-associated fibroblasts (CAFs) play a pivotal role in regulating tumour progression. Therefore, understanding how CAFs communicate with hepatocellular carcinoma (HCC) is crucial for HCC therapy. Recently, exosomes have been considered an important "messenger" between cells. In this study, we performed microRNA (miRNA) sequencing of exosomes derived from CAFs and corresponding para-cancer fibroblasts (PAFs) of HCC patients. We found a significant reduction in the miR-320a level in CAF-derived exosomes. Using exogenous miRNAs, we demonstrated that stromal cells could transfer miRNA to HCC cells. In vitro and in vivo studies further revealed that miR-320a could function as an antitumour miRNA by binding to its direct downstream target PBX3 to suppress HCC cell proliferation, migration and metastasis. The miR-320a-PBX3 pathway inhibited tumour progression by suppressing the activation of the MAPK pathway, which could induce the epithelial-mesenchymal transition and upregulate cyclin-dependent kinase 2 (CDK2) and MMP2 expression to promote cell proliferation and metastasis. In xenograft experiments involving CAFs mixed with MHCC97-H cells, miR-320a overexpression in CAFs could inhibit tumourigenesis. Therefore, these data suggest that CAF-mediated HCC tumour progression is partially related to the loss of antitumour miR-320a in the exosomes of CAFs and that promoting the transfer of stromal cell-derived miR-320a might be a potential treatment option to overcome HCC progression.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinoma Hepatocelular/metabolismo , Movimento Celular , Proliferação de Células , Exossomos/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Animais , Fibroblastos Associados a Câncer/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/secundário , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/metabolismo , Regulação para Baixo , Exossomos/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Comunicação Parácrina , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção
13.
Sci Rep ; 6: 32971, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27640806

RESUMO

Allograft tolerance is the ultimate goal in the field of transplantation immunology. Immature dendritic cells (imDCs) play an important role in establishing tolerance but have limitations, including potential for maturation, short lifespan in vivo and short storage times in vitro. However, exosomes (generally 30-100 nm) from imDCs (imDex) retain many source cell properties and may overcome these limitations. In previous reports, imDex prolonged the survival time of heart or intestine allografts. However, tolerance or long-term survival was not achieved unless immune suppressants were used. Regulatory T cells (Tregs) can protect allografts from immune rejection, and our previous study showed that the effects of imDex were significantly associated with Tregs. Therefore, we incorporated Tregs into the treatment protocol to further reduce or avoid suppressant use. We defined the optimal exosome dose as approximately 20 µg (per treatment before, during and after transplantation) in rat liver transplantation and the antigen-specific role of Tregs in protecting liver allografts. In the co-treatment group, recipients achieved long-term survival, and tolerance was induced. Moreover, imDex amplified Tregs, which required recipient DCs and were enhanced by IL-2. Fortunately, the expanded Tregs retained their regulatory ability and donor-specificity. Thus, imDex and donor-specific Tregs can collaboratively induce graft tolerance.


Assuntos
Células Dendríticas/citologia , Exossomos/metabolismo , Transplante de Fígado/métodos , Linfócitos T Reguladores/transplante , Animais , Células Dendríticas/efeitos dos fármacos , Interleucina-2/farmacologia , Modelos Animais , Ratos , Linfócitos T Reguladores/imunologia , Doadores de Tecidos , Tolerância ao Transplante , Transplante Homólogo
14.
World J Gastroenterol ; 22(23): 5364-73, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27340352

RESUMO

AIM: To investigate whether Tg737 is regulated by microRNA-548a-5p (miR-548a-5p), and correlates with hepatocellular carcinoma (HCC) cell proliferation and apoptosis. METHODS: Assays of loss of function of Tg737 were performed by the colony formation assay, CCK assay and cell cycle assay in HCC cell lines. The interaction between miR-548a-5p and its downstream target, Tg737, was evaluated by a dual-luciferase reporter assay and quantitative real-time polymerase chain reaction. Tg737 was then up-regulated in HCC cells to evaluate its effect on miR-548a-5p regulation. HepG2 cells stably overexpressing miR-548a-5p or miR-control were also subcutaneously inoculated into nude mice to evaluate the effect of miR-548a-5p up-regulation on in vivo tumor growth. As the final step, the effect of miR-548a-5p on the apoptosis induced by cisplatin was evaluated by flow cytometry. RESULTS: Down-regulation of Tg737, which is a target gene of miR-548a-5p, accelerated HCC cell proliferation, and miR-548a-5p promoted HCC cell proliferation in vitro and in vivo. Like the down-regulation of Tg737, overexpression of miR-548a-5p in HCC cell lines promoted cell proliferation, increased colony forming ability and hampered cell apoptosis. In addition, miR-548a-5p overexpression increased HCC cell growth in vivo. MiR-548a-5p down-regulated Tg737 expression through direct contact with its 3' untranslated region (UTR), and miR-548a-5p expression was negatively correlated with Tg737 levels in HCC specimens. Restoring Tg737 (without the 3'UTR) significantly hampered miR-548a-5p induced cell proliferation, and rescued the miR-548a-5p induced cell proliferation inhibition and apoptosis induced by cisplatin. CONCLUSION: MiR-548a-5p negatively regulates the tumor inhibitor gene Tg737 and promotes tumorigenesis in vitro and in vivo, indicating its potential as a novel therapeutic target for HCC.


Assuntos
Apoptose/genética , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Proliferação de Células/genética , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Regiões 3' não Traduzidas , Animais , Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Contagem de Células , Ciclo Celular , Ensaio de Unidades Formadoras de Colônias , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Tumour Biol ; 37(8): 11267-78, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26951511

RESUMO

Dendritic cell (DC) vaccination targeting cancer stem cells is an effective way to suppress tumor progression and reduce the metastasis and recurrence. In the present study, we explored the suitability of side population (SP) cells as source of antigens for DC vaccination against hepatocellular carcinoma (HCC) in a mouse model. In this study, we identified the "stem-like" characteristics of SP cells in the MHCC97 and Hepa 1-6 HCC cell lines. We found that SP cells express high levels of tumor-associated antigens and MHC class I molecules. Although loading with cell lysates did not change the characteristics of DCs, SP cell lysate-pulsed DCs induced antigen-specific T cell responses, including T cell proliferation and increased IFN-γ production by stimulated CD8(+) T cells. We investigated the cytotoxicity of T cells stimulated by SP cell lysate-pulsed DCs in nude mice co-injected with MHCC97 cells. To mimic the in vivo environment, we also confirmed the result in mouse HCC cell line Hepa 1-6 induced tumor-bearing C57/BL6 immune competent mice, and we demonstrated that vaccination with DCs loaded with Hepa 1-6 SP cell lysates could induce a T cell response in vivo and suppress the tumor growth. Our results may have applications for anti-HCC immunotherapy by targeting the cancer stem cells and may provide new insight for cancer vaccines.


Assuntos
Antígenos de Neoplasias/imunologia , Carcinoma Hepatocelular/imunologia , Células Dendríticas/imunologia , Neoplasias Hepáticas/imunologia , Células da Side Population/imunologia , Linfócitos T/imunologia , Animais , Western Blotting , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imunoterapia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células-Tronco Neoplásicas/imunologia , Reação em Cadeia da Polimerase , Vacinação , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncotarget ; 7(10): 11595-608, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26871477

RESUMO

MicroRNA-150 (miR-150) is frequently dysregulated in cancer and is involved in carcinogenesis and cancer progression. In this study, we found that miR-150 was significantly downregulated in hepatocellular carcinoma (HCC) tissues compared to adjacent noncancerous tissues. Low levels of miR-150 were significantly associated with worse clinicopathological characteristics and a poor prognosis for patients with HCC. miR-150 overexpression inhibited cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo. Further experiments indicated that Grb2-associated binding protein 1 (GAB1) was a direct target of miR-150 in HCC cells. In addition, GAB1 expression was increased in HCC tissues and inversely correlated with miR-150 levels. Knockdown of GAB1 mimicked the tumor-suppressive effects of miR-150 overexpression on HCC cells, whereas restoration of GAB1 expression partially abolished the inhibitory effects. Moreover, miR-150 overexpression decreased GAB1 expression, subsequently downregulated phospho-ERK1/2 and suppressed epithelial-mesenchymal-transition (EMT). These effects caused by miR-150 overexpression were alleviated by exogenous GAB1 expression. Taken together, this study demonstrates that miR-150 may be useful as a prognostic marker and that the identified miR-150-GAB1-ERK axis is a potential therapeutic target for HCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Carcinoma Hepatocelular/genética , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Neoplasias Hepáticas/genética , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Transição Epitelial-Mesenquimal , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/biossíntese , Pessoa de Meia-Idade , Metástase Neoplásica , Transfecção
17.
Tumour Biol ; 37(4): 5097-105, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26546438

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancer worldwide. However, the mechanism underlying the HCC development remains unclear. Ras-related associated with diabetes (RRAD) is a small Ras-related GTPase which has been implicated in metabolic disease and several types of cancer, yet its functions in HCC remain unknown. A tissue microarray constructed by 90 paired HCC tissues and adjacent non-cancerous liver tissues was used to examine the protein levels of RRAD, and the messenger RNA (mRNA) expression of RRAD was also detected in a subset of this cohort. The prognostic significance of RRAD was estimated by the Kaplan-Meier analysis and Cox regression. The glucose utilization assay and lactate production assay were performed to measure the role of RRAD in HCC glycolysis. The effect of RRAD in HCC invasion and metastasis was analyzed by transwell assays. Our results suggested that the expression of RRAD was downregulated in HCC tissues compared to the adjacent non-tumorous liver tissues both in mRNA and protein levels and lower RRAD expression served as an independent prognostic indicator for the survival of HCC patients. Moreover, RRAD inhibited hepatoma cell aerobic glycolysis by negatively regulating the expression of glucose transporter 1 (GLUT1) and hexokinase II (HK-II). In addition, RRAD inhibition dramatically increased hepatoma cell invasion and metastasis. In conclusion, our study revealed that RRAD expression was decreased in HCC tumor tissues and predicted poor clinical outcome for HCC patients and played an important role in regulating aerobic glycolysis and cell invasion and metastasis and may represent potential targets for improving the treatment of HCC.


Assuntos
Biomarcadores Tumorais/biossíntese , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas ras/biossíntese , Adulto , Aerobiose , Idoso , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/biossíntese , Glicólise/genética , Células Hep G2 , Hexoquinase/biossíntese , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Prognóstico , Análise Serial de Tecidos , Proteínas ras/genética
18.
Tumour Biol ; 37(3): 3933-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26482611

RESUMO

Long noncoding RNAs (lncRNAs) have been shown to play critical roles in the development and progression of diseases. lncRNA activated by transforming growth factor beta (TGF-ß) (lncRNA-ATB) was discovered as a prognostic factor in hepatocellular carcinoma, gastric cancer, and colorectal cancer. However, little is known about the role of lncRNA-ATB in pancreatic cancer. This study aimed to assess lncRNA-ATB expression in pancreatic cancer and explore its role in pancreatic cancer pathogenesis. Quantitative real-time polymerase chain reaction was performed to detect lncRNA-ATB expression in 150 pancreatic cancer tissues and five pancreatic cancer cell lines compared to paired adjacent normal tissues and normal human pancreatic ductal epithelial cell line HPDE6c-7. The correlations between lncRNA-ATB expression and clinicopathological characteristics and prognosis were also analyzed. We found that lncRNA-ATB expression was decreased in pancreatic cancer tissues and pancreatic cancer cell lines. Low lncRNA-ATB expression levels were significantly correlated with lymph node metastases (yes vs. no, P = 0.009), neural invasion (positive vs. negative, P = 0.049), and clinical stage (early stage vs. advanced stage, P = 0.014). Moreover, patients with low lncRNA-ATB expression levels exhibited markedly worse overall survival prognoses (P < 0.001). Multivariate analysis indicated that decreased lncRNA-ATB expression was an independent predictor of poor prognosis in pancreatic cancer patients (P = 0.005). In conclusion, lncRNA-ATB may play a critical role in pancreatic cancer progression and prognosis and may serve as a potential prognostic biomarker in pancreatic cancer patients.


Assuntos
Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/genética , Linhagem Celular , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Prognóstico , Modelos de Riscos Proporcionais , Reação em Cadeia da Polimerase Via Transcriptase Reversa/estatística & dados numéricos
19.
Genom Data ; 5: 385-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26484292

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a common and deadly cancer. Despite numerous efforts, no reliable biomarker is available for daily clinical practice. Circular RNAs (circRNAs) are an abundant, stable and conserved class of RNA molecules that exhibit tissue/developmental-stage-specific expression (Salzman et al., 2012; Jeck et al., 2013; Memczak et al., 2013). CircRNAs play a crucial role in disease, especially in cancer, and provide new potential diagnostic and therapeutic targets for disease (Hansen et al., 2013; Qu et al., 2015).This research was designed to explore the expression profile of circRNAs in PDAC to serve as new diagnosis and treatment strategies for PDAC. Microarray and sample annotation data were deposited in Gene Expression Omnibus (GEO) under accession number GSE69362.

20.
Int J Oncol ; 47(1): 231-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25955618

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common human malignancies and also the leading cause of cancer-related death in the world. The mechanisms underlying the progression and metastasis of HCC remain unclear. The E3 ubiquitin ligase F-box and WD repeat domain-containing 7 (Fbxw7) is broadly considered as a tumor suppressor gene. However, the role of Fbxw7 in HCC is not clear. To investigate the expression and biological functions of Fbxw7 in HCC, we examined Fbxw7 expression level using HCC tissue microarray and immunohistochemistry. Our data showed that Fbxw7 expression is significantly reduced in HCC compared with non-cancerous tissues (P<0.05). Fbxw7 levels were significantly associated with tumor differentiation (P=0.013), the incidence of portal or hepatic venous invasion (P=0.031), metastasis (P=0.027) and AJCC cancer stage (P=0.047). Then, we observed a strong correlation between low Fbxw7 expression and a worse 5-year survival of HCC patients (P<0.001). Furthermore, multivariate Cox regression analyses demonstrated that the Fbxw7 expression (P<0.001) was an independent factor for the prediction of the overall survival of HCC patients. We also found that both Fbxw7 mRNA and protein levels were significantly reduced in HCC cell lines compared with human liver non-tumor cell line. Moreover, our in vitro experiments showed a remarkable increase of cell migration and invasion in Fbxw7-knockdown cells and a decrease in Fbxw7-overexpress cells. In addition, the present study demonstrated that Fbxw7 is involved in the migration and invasion of HCC cells via regulating Notch1 and the downstream molecules of Notch1. Taken together, our findings indicate that Fbxw7 can be used as a prognostic marker; it has an important role in HCC progression and inhibits HCC cell migration and invasion through the Notch1 signaling pathway.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor Notch1/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Adulto , Idoso , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proteína 7 com Repetições F-Box-WD , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Receptor Notch1/genética , Transdução de Sinais , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...