Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 16(1): 1564-1577, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123138

RESUMO

The application of self-healing polymers in corrosion protection is often limited by their slow and nonautonomous healing ability and poor long-term durability. In this paper, we propose a double-layered transfer self-healing coating constructed by soft and rigid polymer layers. The soft polymer has a fast self-healing rate of 10 min to repair, which was found to accelerate the self-healing of the upper rigid layer. The rigid polymer provided relatively high barrier ability while preserving certain self-healing ability owing to the shear-thinning effect. In this way, the double-layered coating combined rapid self-healing (∼1 h) and high impedance modulus |Z|f-0.01 Hz of 2.58 × 1010 Ω·cm2. Furthermore, the introduction of pyridine groups in B-PEA and polyacrylate-grafted-polydimethylsiloxane (PEA-g-PDMS) induced the Fe ion-responsive ability and shortened the self-healing time to 40 min (100 ppm Fe). Finally, barrier and anode sacrificed layers were introduced to produce multilayered architecture with active/passive anticorrosion performance. In the presence of scratches, the |Z|f-0.01 Hz can be preserved at 1.03 × 1010 Ω·cm2 after 200 days. The created anticorrosive coating technology combines long-term durability with room temperature autonomous rapid self-healing capability, providing a broad prospect for anticorrosive applications.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37380882

RESUMO

Studies of how positive and negative coping styles affect social anxiety show mixed results. Hence, our two meta-analyses determined the overall effect sizes of problem solving-focused coping (PSC) styles and emotion-focused coping (EFC) styles on social anxiety in mainland China (PSC: k = 49 studies, N = 34,669; EFC: k = 52, N = 36,531). PSC was negatively linked to social anxiety (- .198), and EFC was positively linked to social anxiety (.223). In years with more national income, PSC's and EFC's effect sizes were larger. PSC's effect sizes were smaller among rural students (vs. urban students), larger among older students (university, high school, middle school), and larger in cross-sectional (vs. longitudinal) studies. When using SAD (vs. others) social anxiety measures, PSC effect sizes were larger, but EFC effect sizes were smaller. EFC effect sizes were larger in studies with convenience (vs. representative) samples. Gender, single child status, and coping style measurement showed no moderation effects. These findings suggest that using problem solving-focused coping styles rather than emotion-focused may reduce social anxiety, so future experimental studies can test this idea more rigorously.

4.
Chem Commun (Camb) ; 59(22): 3293-3296, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36843530

RESUMO

The high ice adhesion strength (τ) and low adhesion of lubricant-free slippery polymers have restricted their applications. We synthesized polysiloxane-g-fluorinated acrylate polymer with a branched structure, anchored groups and dynamic cross-linked network, features imparting increased chain segment slipperiness and self-healability. The coating showed a low τ (6 kPa), strong adhesion and prolonged life.

5.
Cell Mol Biol (Noisy-le-grand) ; 69(15): 95-98, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38279481

RESUMO

This study aimed to explore the mechanism of apoptosis and autophagy of chondrocytes induced by tumor necrosis factor α (TNA-α) by activating the NF-κB signal pathway. For this purpose, 24 SD rats were selected for feeding. The knee cartilage was cut by ophthalmology and the chondrocytes were extracted. The chondrocytes were randomly divided into a control group (CG) and an observation group (OG). TNF-α of 50ng/mL was added before the beginning of the study, while the control group did not receive any treatment. The levels of IL-1, IL-6, IL-12, autophagy markers (Atg5, Atg7, LC3II/I), apoptosis-related indexes (Bax, Bcl-2), NF-κB signal pathway-related indexes (p-p65, p65, IκBα) protein expression, mRNA expression and apoptosis rate in chondrocytes were compared in each group. Results showed that the levels of IL-1, IL-6 and IL-12 in the OG were raised than those in the CG. The expression levels of autophagy markers Atg5, Atg7, LC3II/I and mRNA in the OG were reduced than those in the CG. The apoptosis rate and the expression of BaxmRNA and protein in the OG were higher than those in the CG, while the expression of Bcl-2mRNA and protein were lower than those in the CG. The p-p65, p65, IκBα protein and mRNA related to NF-κB signal pathway in the OG were raised than those in the CG. In conclusion, TNF-α can induce apoptosis and autophagy of chondrocytes by activating the NF-κB signal pathway.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Ratos , Animais , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Condrócitos/metabolismo , Interleucina-6/metabolismo , Ratos Sprague-Dawley , Células Cultivadas , Transdução de Sinais , Apoptose , Interleucina-12/metabolismo , Autofagia , RNA Mensageiro/metabolismo , Interleucina-1/metabolismo
6.
Food Nutr Res ; 662022.
Artigo em Inglês | MEDLINE | ID: mdl-35950104

RESUMO

Background: GJ-4 is extracted from Gardenia jasminoides J. Ellis (Fructus Gardenia) with crocin composition and has been demonstrated to improve memory deficits in several dementia models in our previous studies. Objective: This study aimed to evaluate the effects of GJ-4 on hyperlipidemic vascular dementia (VD) and explore the underlying mechanisms. Design: In the current study, we employed a chronic hyperlipidemic VD rat model by permanent bilateral common carotid arteries occlusion (2-VO) based on high-fat diet (HFD), which is an ideal model to mimic the clinical pathogenesis of human VD. Results: Our results showed that GJ-4 could significantly reduce serum lipids level and improve cerebral blood flow in hyperlipidemic VD rats. Additionally, treatment with GJ-4 remarkedly ameliorated memory impairment and alleviated neuronal injury. Mechanistic investigation revealed that the neuroprotective effects of GJ-4 might be attributed to the inhibition of microglia-mediated neuro-inflammation via regulating the M1/M2 polarization. Our data further illustrated that GJ-4 could regulate the phenotype of microglia through activating the peroxisome proliferator-activated receptor-γ (PPAR-γ) and subsequently inhibited nuclear factor-κB (NF-κB) nuclear translocation and increased CCAAT/enhancer-binding protein ß (C/EBPß) expression. Conclusion: Our results implied that GJ-4 might be a promising drug to improve VD through the regulation of microglial M1/M2 polarization and the subsequent inhibition of neuro-inflammation.

7.
Acta Pharmacol Sin ; 43(2): 285-294, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34593974

RESUMO

Neuroinflammation plays an important role in neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease. HACE1 (HECT domain and Ankyrin repeat Containing E3 ubiquitin-protein ligase 1) is a tumor suppressor. Recent evidence suggests that HACE1 may be involved in oxidative stress responses. Due to the critical role of ROS in neuroinflammation, we speculated that HACE1 might participate in neuroinflammation and related neurodegenerative diseases, such as PD. In this study, we investigated the role of HACE1 in neuroinflammation of PD models. We showed that HACE1 knockdown exacerbated LPS-induced neuroinflammation in BV2 microglial cells in vitro through suppressing ubiquitination and degradation of activated Rac1, an NADPH oxidase subunit. Furthermore, we showed that HACE1 exerted vital neuronal protection through increasing Rac1 activity and stability in LPS-treated SH-SY5Y cells, as HACE1 knockdown leading to lower tolerance to LPS challenge. In MPTP-induced acute PD mouse model, HACE1 knockdown exacerbated motor deficits by activating Rac1. Finally, mutant α-synuclein (A53T)-overexpressing mice, a chronic PD mouse model, exhibited age-dependent reduction of HACE1 levels in the midbrain and striatum, implicating that HACE1 participated in PD pathological progression. This study for the first time demonstrates that HACE1 is a negative regulator of neuroinflammation and involved in the PD pathogenesis by regulating Rac1 activity. The data support HACE1 as a potential target for PD and other neurodegenerative diseases.


Assuntos
Transtornos Parkinsonianos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Imunofluorescência , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/metabolismo , Teste de Desempenho do Rota-Rod , Ubiquitinação
8.
Phytomedicine ; 93: 153780, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607163

RESUMO

BACKGROUND: Accumulating evidence demonstrates that traditional Chinese medicines that act on multiple targets could effectively treat various multi-etiological diseases, including cerebrovascular diseases, Alzheimer's disease (AD), Parkinson's disease (PD) and so on. Previous studies have shown that crocin richments (GJ-4), Gardenia jasminoides J.Ellis extract, provide neuroprotective effects on cognitive impairments in AD mouse models. However, the mechanism how GJ-4 improves cognition remains still unclear. PURPOSE: The aim of this study was to uncover the protective effects and underlying mechanism of GJ-4 on PrP-hAßPPswe/PS1ΔE9 (APP/PS1) transgenic mice. METHODS: APP/PS1 mice were given GJ-4 (10, 20, and 50 mg/kg), donepezil (5 mg/kg) and memantine (5 mg/kg) orally at eight months of age for 12 consecutive weeks. Morris water maze and novel object recognition were conducted to assess the cognitive ability of mice. The release of inflammatory cytokines was determined by RT-PCR assay, and the pathological features of neurons and microglia were assayed by immunohistochemistry and immunofluorescence assay. The expression of Aß-related proteins and signaling pathways were determined by Western blot. RESULTS: The behavioral results revealed that GJ-4 ameliorated the cognitive deficits of APP/PS1 mice measured by Morris water maze and novel object recognition tests. Mechanism studies indicated that GJ-4 significantly decreased ß-amyloid (Aß) level through reducing Aß production and promoting Aß degradation. It has been reported that Aß plaques trigger the hyper-phosphorylation of tau protein in APP/PS1 mice. Consistent with previous studies, hyper-phosphorylation of tau was also occurred in APP/PS1 mice in the present study, and GJ-4 inhibited Tau phosphorylation at different sites. Overwhelming evidence indicates that neuroinflammation stimulated by Aß and hyperphosphorylated tau is involved in the pathological progression of AD. We found that GJ-4 suppressed neuroinflammatory responses in the brain through regulating phosphatidylinositide 3-kinase/AKT (PI3K/AKT) signaling pathway activation, and subsequent expression of inflammatory proteins and release of inflammatory cytokines. CONCLUSION: Altogether, GJ-4 ameliorated cognition of APP/PS1 transgenic mice through multiple targets, including Aß, tau and neuroinflammation. This study provides a solid research basis for further development of GJ-4 as a potential candidate for the treatment of AD.


Assuntos
Disfunção Cognitiva , Medicamentos de Ervas Chinesas , Gardenia , Animais , Cognição , Disfunção Cognitiva/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases
9.
Mol Neurobiol ; 58(11): 5743-5755, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34398403

RESUMO

Microglial activation-induced neuroinflammation is critical in the pathogenesis of neurodegenerative diseases. Activated microglia are regulated mainly by innate pattern recognition receptors (PRRs) on their surface, of which macrophage receptor with collagenous structure (Marco) is a well-characterized scavenger receptor constitutively expressed on specific subsets of macrophages, including microglia. Increasing evidence has shown that Marco is involved in the pathogenesis of a range of inflammatory processes. However, research on the role of Marco in regulating neuroinflammation has reported conflicting results. In the present study, we examined the role Marco played in triggering neuroinflammation and its underlying mechanisms. The results demonstrated that silencing the Marco gene resulted in a significantly reduced neuroinflammatory response and vice versa. α-Syn stimulation in Marco overexpressing cells induced a pronounced inflammatory response, suggesting that Marco alone could trigger an inflammatory response. We also found that TLR2 significantly promoted Marco-mediated neuroinflammation, indicating TLR2 was an important co-receptor of Marco. Knocking down the TLR2 gene in microglia and mouse substantia nigra resulted in decreased expression of Marco. Subsequent mechanistic studies showed that deleting the SRCR domain of Marco resulted in disruption of the inflammatory response and the interaction between TLR2 and Marco. This suggested that TLR2 binds directly to the SRCR domain of Marco and regulates Marco-mediated neuroinflammation. In summary, this investigation revealed that TLR2 could potentiate Marco-mediated neuroinflammation by interacting with the SRCR domain of Marco, providing a new target for inhibiting neuroinflammation in neurodegenerative diseases.


Assuntos
Doenças Neuroinflamatórias/metabolismo , Receptores Imunológicos/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Óxido Nítrico/metabolismo , Polissacarídeos/farmacologia , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Interferência de RNA , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/química , Proteínas Recombinantes/metabolismo , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , alfa-Sinucleína/farmacologia
10.
Front Pharmacol ; 12: 588003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815098

RESUMO

Mitochondrial dysfunction is involved in the pathogenesis of Parkinson's disease (PD). Mitochondrial morphology is dynamic and precisely regulated by mitochondrial fission and fusion machinery. Aberrant mitochondrial fragmentation, which can result in cell death, is controlled by the mitochondrial fission protein, dynamin-related protein 1 (Drp1). Our previous results demonstrated that FLZ could correct mitochondrial dysfunction, but the effect of FLZ on mitochondrial dynamics remain uncharacterized. In this study, we investigated the effect of FLZ and the role of Drp1 on 1-methyl-4-phenylpyridinium (MPP+)-induced mitochondrial fission in neurons. We observed that FLZ blocked Drp1, inhibited Drp1 enzyme activity, and reduced excessive mitochondrial fission in cultured neurons. Furthermore, by inhibiting mitochondrial fission and ROS production, FLZ improved mitochondrial integrity and membrane potential, resulting in neuroprotection. FLZ curtailed the reduction of synaptic branches of primary cultured dopaminergic neurons caused by MPP+ exposure, reduced abnormal fission, restored normal mitochondrial distribution in neurons, and exhibited protective effects on dopaminergic neurons. The in vitro research results were validated using an MPTP-induced PD mouse model. The in vivo results revealed that FLZ significantly reduced the mitochondrial translocation of Drp1 in the midbrain of PD mice, which, in turn, reduced the mitochondrial fragmentation in mouse substantia nigra neurons. FLZ also protected dopaminergic neurons in PD mice and increased the dopamine content in the striatum, which improved the motor coordination ability of the mice. These findings elucidate this newly discovered mechanism through which FLZ produces neuroprotection in PD.

11.
J Ethnopharmacol ; 267: 113491, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091490

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gardenia jasminoides J. Ellis (Fructus Gardenia) is a traditional Chinese medicine with diverse pharmacological functions, such as anti-inflammation, anti-depression, as well as improvement of cognition and ischemia brain injury. GJ-4 is a natural extract from Gardenia jasminoides J. Ellis (Fructus Gardenia) and has been proved to improve memory impairment in Alzheimer's disease (AD) mouse model in our previous studies. AIM OF THE STUDY: This study aimed to evaluate the therapeutic effects of GJ-4 on vascular dementia (VD) and explore the potential mechanisms. MATERIAL AND METHODS: In our experiment, a focal cerebral ischemia and reperfusion rat model was successfully developed by the middle cerebral artery occlusion and reperfusion (MCAO/R). GJ-4 (10 mg/kg, 25 mg/kg, 50 mg/kg) and nimodipine (10 mg/kg) were orally administered to rats once a day for consecutive 12 days. Learning and memory behavioral performance was assayed by step-down test and Morris water maze test. The neurological scoring test was performed to evaluate the neurological function of rats. 2,3,5-Triphenyltetrazolium chloride (TTC) staining and Nissl staining were respectively employed to determine the infarct condition and neuronal injury of the brain. Iba1 immunohistochemistry was used to show the activation of microglia. Moreover, the synaptic damage and inflammatory level were detected by Western blot. RESULTS: GJ-4 could significantly improve memory impairment, cerebral infraction, as well as neurological deficits of VD rats induced by MCAO/R. Further research indicated VD-induced neuronal injury was alleviated by GJ-4. In addition, GJ-4 could protect synapse of VD rats by upregulating synaptophysin (SYP) expression, post synaptic density 95 protein (PSD95) expression, and downregulating N-Methyl-D-Aspartate receptor 1 (NMDAR1) expression. Subsequent investigation of the underlying mechanisms identified that GJ-4 could suppress neuroinflammatory responses, supported by inhibited activation of microglia and reduced expression of inflammatory proteins, which ultimately exerted neuroprotective effects on VD. Further mechanistic study indicated that janus kinase 2 (JAK2)/signal transducer and activator of transcription 1 (STAT1) pathway was inhibited by GJ-4 treatment. CONCLUSION: These results suggested that GJ-4 might serve as a potential drug to improve VD. In addition, our study indicated that inhibition of neuroinflammation might be a promising target to treat VD.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Demência Vascular/prevenção & controle , Infarto da Artéria Cerebral Média/tratamento farmacológico , Janus Quinase 2/metabolismo , Transtornos da Memória/prevenção & controle , Memória/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Extratos Vegetais/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Fator de Transcrição STAT1/metabolismo , Animais , Encéfalo/enzimologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Demência Vascular/enzimologia , Demência Vascular/etiologia , Demência Vascular/psicologia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Gardenia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Transtornos da Memória/enzimologia , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia
14.
Biomed Pharmacother ; 127: 110131, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32325348

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease. AD has become an important social health problem but there are few therapeutic drugs. Many researchers devote to the development of drugs for the treatment of AD. GJ-4 is crocin enrichments from Gardenia jasminoides J. Ellis, and our previous studies have shown GJ-4 had potent neuroprotective effects on several AD animal models. However, the underlying mechanisms have not been fully elucidated. The aim of the present study was to explore the mechanism of GJ-4 on a Aß25-35-intoxicated mouse model. The results demonstrated that GJ-4 treatment significantly improved spatial learning and memory abilities of the AD mice challenged by Aß25-35. Mechanistic study indicated that GJ-4 could alleviate endothelial dysfunction, as GJ-4 markedly reduced endothelial cell edema, as well as improved tight junction structures by up-regulating Zonula occludens-1 (ZO-1), Claudin-5 and Occludin expressions. Moreover, GJ-4 markedly reduced receptor for advanced glycation end products (RAGE) expression and increased low-density lipoprotein receptor-related protein-1 (LRP-1) expression, suggesting endothelial transduction and clearance of toxic species capabilities improved by GJ-4 treatment. The results also indicated that GJ-4 significantly decreased IL-6 and IL-1ß mRNA expressions, as well as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expressions, implying the inhibition of glial activation and vascular inflammation by GJ-4 treatment. Furthermore, GJ-4 treatment inhibited glial activation mediated neuroinflammation through inhibiting high-mobility group box protein 1(HMGB-1)/RAGE/NF-κB signaling pathway, which might confer to the neuroprotection. In conclusion, our present study proved GJ-4 could protect the neurovascular unit (NVU), through attenuating endothelial cell damage, enhancing tight junction function, inhibiting of glial activation and protecting of neurons. This study provided evidence that the beneficial effects of GJ-4 on AD might be owing to its protection on NVU.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Células Endoteliais/efeitos dos fármacos , Gardenia/química , Memória/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/uso terapêutico , Receptor para Produtos Finais de Glicação Avançada/fisiologia , Junções Íntimas/química , Junções Íntimas/efeitos dos fármacos
15.
Front Neurosci ; 14: 45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32132891

RESUMO

Chronic neuroinflammation is of great importance in the pathogenesis of Parkinson's disease (PD). During the process of neuroinflammation, overactivated microglia release many proinflammatory factors, which eventually induce neurodegeneration. Inhibition of excessive microglial activation is regarded as a promising strategy for PD treatment. Src is a non-receptor tyrosine kinase that is closely related to tumors. Recently, some reports indicated that Src is a central mediator in multiple signaling pathways including neuroinflammation. The aim of our study was to demonstrate the role of Src in microglial regulation and neuroinflammation. The lipopolysaccharide (LPS)-stimulated BV2 microglia model and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model were applied in this study. The results showed that inhibition of Src could significantly relieve microgliosis and decrease levels of inflammatory factors. Besides, inhibition of Src function reduced the loss of dopaminergic neurons and improved the motor behavior of the MPTP-treated mice. Thus, this study not only verified the critical role of Src tyrosine kinase in neuroinflammation but also further proved that interfering neuroinflammation is beneficial for PD treatment. More importantly, this study shed a light on the hypothesis that Src tyrosine kinase might be a potential therapeutic target for PD and other neuroinflammation-related diseases.

16.
Brain Behav Immun ; 87: 751-764, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32173452

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune disease characterized by inflammatory infiltration and demyelination in the central nervous system (CNS). Among the factors involved in the immunological mechanisms of MS, T helper 1 (Th1) cells and T helper 17 (Th17) cells play a critical role. Compound 21, a novel phloroglucinol derivative, significantly protected myelin from damage in our previous study. However, it remains unclear whether this compound affects MS. In this study, the experimental autoimmune encephalomyelitis (EAE) rat model was established to mimic the pathological process of MS and evaluate the neuroprotective effect of Compound 21. The results illustrated that Compound 21 treatment notably attenuates neurological deficits, immune infiltration, and demyelination in EAE rats. Our mechanistic investigation revealed that Compound 21 treatment reduces the population of Th1/Th17 cells and inhibits their infiltration into the CNS. Furthermore, we found that the inhibition of Th1/Th17 cell infiltration is related to the direct suppression of Th1/Th17 cell differentiation and the inhibition of proinflammatory microglial cells. Collectively, these results confirm that Compound 21 suppresses infiltrated Th1/Th17 cells to alleviate demyelination in EAE rats, suggesting its potential role as a novel candidate for MS treatment.


Assuntos
Encefalomielite Autoimune Experimental , Células Th17 , Animais , Diferenciação Celular , Encefalomielite Autoimune Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Floroglucinol/farmacologia , Ratos , Células Th1
17.
Sci China Life Sci ; 63(6): 905-914, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31637574

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease in the central nervous system. The myelin loss is mainly caused by dysfunction of oligodendrocytes and inflammatory responses of microglia and astrocytes further aggravate the demyelination. Current therapies for MS focus on suppressing the overactivated immune response but cannot halt the disease progress, so effective drugs are urgently needed. Compound 21 is a phloroglucinol derivative that has been proved to have an outstanding anti-inflammatory effect. The purpose of the present study is to investigate whether this novel compound is effective in MS. The cuprizone-induced model was used in this study to mimic the pathological progress of MS. The results showed that Compound 21 significantly improved the neurological dysfunction and motor coordination impairment. Luxol Fast Blue staining and myelin basic protein immunostaining demonstrated that Compound 21 remarkably promoted remyelination. In addition, Compound 21 significantly promoted oligodendrocytes differentiation. Furthermore, we found that Compound 21 decreased microglia and astrocytes activities and the subsequent neuroinflammatory response, indicating that the anti-inflammatory effect of Compound 21 was also involved in its neuro-protection. All the data prove that Compound 21 exerts protective effect on MS through promoting remyelination and suppressing neuroinflammation, indicating that Compound 21 might be a potential drug candidate for MS treatment.


Assuntos
Cuprizona/efeitos adversos , Esclerose Múltipla/tratamento farmacológico , Floroglucinol/farmacologia , Floroglucinol/uso terapêutico , Remielinização/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Encéfalo , Citocinas/metabolismo , Modelos Animais de Doenças , Descoberta de Drogas , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Esclerose Múltipla/induzido quimicamente , Proteína Básica da Mielina/metabolismo , Oligodendroglia/efeitos dos fármacos , Resultado do Tratamento
18.
Neurobiol Dis ; 134: 104630, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31678404

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease characterized by the autoimmune attack of oligodendrocytes, leading to demyelination and progressive functional deficits. CXC chemokine receptor 2 (CXCR2) is recently reported to orchestrate the migration, proliferation and differentiation of oligodendrocyte precursor cells (OPCs), which implies its possible involvement in the demyelinating process. Here, we used a CXCR2 antagonist, compound 2, as a tool to investigate the role of CXCR2 in demyelination and the underlying mechanism. The primary cultured oligodendrocytes and cuprizone (CPZ)-intoxicated mice were applied in the present study. The results showed that compound 2 significantly promoted OPC proliferation and differentiation. In the demyelinated lesions of CPZ-intoxicated mice, vigorous OPC proliferation and myelin repair was observed after compound 2 treatment. Subsequent investigation of the underlying mechanisms identified that upon inhibition of CXCR2, compound 2 treatment upregulated Ki67, transcription factor 2 (Olig2) and Caspr expression, activated PI3K/AKT/mTOR signaling, ultimately promoted OPCs differentiation and enhanced remyelination. In conclusion, our results demonstrated that CXCR2 antagonism efficiently promoted OPC differentiation and enhanced remyelination in CPZ-intoxicated mice, supporting CXCR2 as a promising therapeutic target for the treatment of chronic demyelinating diseases such as MS.


Assuntos
Esclerose Múltipla/patologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Receptores de Interleucina-8B/antagonistas & inibidores , Remielinização/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Células Precursoras de Oligodendrócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...