Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028898

RESUMO

Solar-driven methanation of carbon dioxide (CO2) with water (H2O) has emerged as an important strategy for achieving both carbon neutrality and fuel production. The selective methanation of CO2 was often hindered by the sluggish kinetics and the multiple competition of other C1 byproducts. To overcome this bottleneck, we utilized a biomass synthesis method to synthesize SiC rods and then constructed a direct Z-scheme heterojunction Co3O4/SiC catalyst. The substantial difference in work functions between SiC and Co3O4 served as a significant source of the charge driving force, facilitating the conversion of CO2 to CH4. The high-valent cobalt Co(IV) in Co3O4 acts as an active species to promote efficient dissociation of water. This favorable condition greatly enhanced the likelihood of a high concentration of electrons and protons around a single site on the catalyst surface for CO2 methanation. DFT calculation showed that the energy barrier of CO2 hydrogenation was significantly reduced at the Co3O4/SiC heterojunction interface, which changed the reaction pathway and completely converted the product from CO to CH4. The optimum CH4 evolution rate of Co3O4/SiC samples was 21.3 µmol g-1 h-1 with 100% selectivity. This study has an important guiding significance for the selective regulation of CO2 to CH4 products in photocatalysis applications.

2.
J Colloid Interface Sci ; 674: 158-167, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925061

RESUMO

Constructing strong interfacial electric fields to enhance the surface charge transport kinetics is an effective strategy for promoting CO2 conversion. Herein, we present the fabrication of CdS-Bi2MoO6 Z-scheme heterojunctions with a robust internal electric field (IEF) using an in situ growth technique, establishing chemical bonding between the components. The IEF at the interface can offer an impetus for the segregation and transportation of photogenerated carriers, while the Cd-O chemical bonding mode acts as a rapid conduit for these carriers, thereby reducing the charge transfer distance. As a result, the Z-scheme charge transfer is accelerated due to the synergistic influence of these two factors. Therefore, the optimized CdS/Bi2MoO6 Z-scheme heterojunction possesses significantly enhanced dynamic carrier mobility, thus promoting the conversion of CO2 to CO without the need for additional co-catalysts or sacrificial agents. This optimization yields a remarkable CO selectivity of up to 97%. Meanwhile, the expedited Z-scheme charge transfer mechanism is validated through X-ray photoelectron spectroscopy, Kelvin probe force microscopy, and in situ diffuse reflectance infrared Fourier transform spectroscopy.

3.
Small ; : e2402459, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751061

RESUMO

The electrocatalytic conversion of inert CO2 to value-added chemical fuels powered by renewable energy is one of the benchmark approaches to address excessive carbon emissions and achieve carbon-neutral energy restructuring. However, the adsorption/activation of supersymmetric CO2 is facing insurmountable challenges that constrain its industrial-scale applications. Here, this theory-guided study confronts these challenges by leveraging the synergies of bimetallic sites and defect engineering, where pyrochlore-type semiconductor A2B2O7 is employed as research platform and the conversion of CO2-to-HCOOH as the model reaction. Specifically, defect engineering intensified greatly the chemisorption-induced CO2 polarization via the bimetallic coordination, thermodynamically beneficial to the HCOOH production via the *HCO2 intermediate. The optimal V-BSO-430 electrocatalyst with abundant surface oxygen vacancies achieved a superior HCOOH yield of 116.7 mmol h-1 cm-2 at -1.2 VRHE, rivalling the incumbent similar reaction systems. Furthermore, the unique catalytic unit featured with a Bi1-Sn-Bi2 triangular structure, which is reconstructed by defect engineering, and altered the pathway of CO2 adsorption and activation to allow the preferential affinity of the suspended O atom in *HCO2 to H. As a result, V-BSO-430 gave an impressive FEHCOOH of 93% at -1.0 VRHE. This study held promises for inspiring the exploration of bimetallic materials from the massive semiconductor database.

4.
Small ; : e2402427, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751309

RESUMO

Halogenated methane serves as a universal platform molecule for building high-value chemicals. Utilizing sodium chloride solution for photocatalytic methane chlorination presents an environmentally friendly method for methane conversion. However, competing reactions in gas-solid-liquid systems leads to low efficiency and selectivity in photocatalytic methane chlorination. Here, an in situ method is employed to fabricate a hydrophobic layer of TaOx species on the surface of NaTaO3. Through in-situ XPS and XANES spectra analysis, it is determined that TaOx is a coordination unsaturated species. The TaOx species transforms the surface properties from the inherent hydrophilicity of NaTaO3 to the hydrophobicity of TaOx/NaTaO3, which enhances the accessibility of CH4 for adsorption and activation, and thus promotes the methane chlorination reaction within the gas-liquid-solid three-phase system. The optimized TaOx/NaTaO3 photocatalyst has a good durability for multiple cycles of methane chlorination reactions, yielding CH3Cl at a rate of 233 µmol g-1 h-1 with a selectivity of 83%. In contrast, pure NaTaO3 exhibits almost no activity toward CH3Cl formation, instead catalyzing the over-oxidation of CH4 into CO2. Notably, the activity of the optimized TaOx/NaTaO3 photocatalyst surpasses that of reported noble metal photocatalysts. This research offers an effective strategy for enhancing the selectivity of photocatalytic methane chlorination using inorganic chlorine ions.

5.
J Colloid Interface Sci ; 659: 776-787, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38215614

RESUMO

Photocatalytic selective oxidation of alcohols into aldehydes and H2 is a green strategy for obtaining both value-added chemicals and clean energy. Herein, a dual-purpose ZnIn2S4@CdS photocatalyst was designed and constructed for efficient catalyzing benzyl alcohol (BA) into benzaldehyde (BAD) with coupled H2 evolution. To address the deep-rooted problems of pure CdS, such as high recombination of photogenerated carriers and severe photo-corrosion, while also preserving its superiority in H2 production, ZnIn2S4 with a suitable band structure and adequate oxidizing capability was chosen to match CdS by constructing a coupled reaction. As designed, the photoexcited holes (electrons) in the CdS (ZnIn2S4) were spatially separated and transferred to the ZnIn2S4 (CdS) by electrostatic pull from the built-in electric field, leading to expected BAD production (12.1 mmol g-1 h-1) at the ZnIn2S4 site and H2 generation (12.2 mmol g-1 h-1) at the CdS site. This composite photocatalyst also exhibited high photostability due to the reasonable hole transfer from CdS to ZnIn2S4. The experimental results suggest that the photocatalytic transform of BA into BAD on ZnIn2S4@CdS is via a carbon-centered radical mechanism. This work may extend the design of advanced photocatalysts for more chemicals by replacing H2 evolution with N2 fixation or CO2 reduction in the coupled reactions.

6.
Small ; 20(1): e2304776, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658502

RESUMO

Efficient artificial photosynthesis of disulfide bonds holds promises to facilitate reverse decoding of genetic codes and deciphering the secrets of protein multilevel folding, as well as the development of life science and advanced functional materials. However, the incumbent synthesis strategies encounter separation challenges arising from leaving groups in the ─S─S─ coupling reaction. In this study, according to the reaction mechanism of free-radical-triggered ─S─S─ coupling, light-driven heterojunction functional photocatalysts are tailored and constructed, enabling them to efficiently generate free radicals and trigger the coupling reaction. Specifically, perovskites and covalent organic frameworks (COFs) are screened out as target materials due to their superior light-harvesting and photoelectronic properties, as well as flexible and tunable band structure. The in situ assembled Z-scheme heterojunction MAPB-M-COF (MAPbBr3 = MAPB, MA+ = CH3 NH2 + ) demonstrates a perfect trade-off between quantum efficiency and redox chemical potential via band engineering management. The MAPB-M-COF achieves a 100% ─S─S─ coupling yield with a record photoquantum efficiency of 11.50% and outstanding cycling stability, rivaling all the incumbent similar reaction systems. It highlights the effectiveness and superiority of application-oriented band engineering management in designing efficient multifunctional photocatalysts. This study demonstrates a concept-to-proof research methodology for the development of various integrated heterojunction semiconductors for light-driven chemical reaction and energy conversion.

7.
Eur J Med Chem ; 264: 116035, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38101040

RESUMO

Sonodynamic therapy (SDT) is an emerging non-invasive and effective therapeutic modality for cancer treatment bearing benefit of deep tissue-penetration in comparison to photo-inspired therapy. However, exploring novel sonosensitizers with high sonosensitivity and desirable biosafety remains a significant challenge. Although boron dipyrromethene (BODIPY) dyes have been widely used in biomedical filed, no BODIPY-based sonosensitizers have been reported yet. Herein, we synthesized four BODIPY dyes (BDP1-BDP4) and investigated their potential applications in SDT. BDP4 exhibited superb sonosensitivity and high SDT efficiency against cancer cells and tumors in tumor-bearing mice. The types of the generated reactive oxygen species, cavitation effect, and cell apoptosis were investigated to figure out the sonodynamic therapeutic mechanisms of BDP4. This work for the first time demonstrates the potential of BODIPY dyes as novel sonosensitizers for SDT, which may pave an avenue for developing more efficient and safer sonosensitizers in future.


Assuntos
Apoptose , Neoplasias , Animais , Camundongos , Corantes , Espécies Reativas de Oxigênio , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
8.
Nat Commun ; 14(1): 6168, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794001

RESUMO

The active center for the adsorption and activation of carbon dioxide plays a vital role in the conversion and product selectivity of photocatalytic CO2 reduction. Here, we find multiple metal sulfides CuInSnS4 octahedral nanocrystal with exposed (1 1 1) plane for the selectively photocatalytic CO2 reduction to methane. Still, the product is switched to carbon monoxide on the corresponding individual metal sulfides In2S3, SnS2, and Cu2S. Unlike the common metal or defects as active sites, the non-metal sulfur atom in CuInSnS4 is revealed to be the adsorption center for responding to the selectivity of CH4 products. The carbon atom of CO2 adsorbed on the electron-poor sulfur atom of CuInSnS4 is favorable for stabilizing the intermediates and thus promotes the conversion of CO2 to CH4. Both the activity and selectivity of CH4 products over the pristine CuInSnS4 nanocrystal can be further improved by the modification of with various co-catalysts to enhance the separation of the photogenerated charge carrier. This work provides a non-metal active site to determine the conversion and selectivity of photocatalytic CO2 reduction.

9.
ACS Appl Mater Interfaces ; 15(43): 50155-50165, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852272

RESUMO

In a novel approach that capitalized on the differential solubility product (Ksp) of ZnSe and Ag2Se, a unique ZnSe/Ag2Se binary heterostructure was efficiently synthesized in situ. ZnSe/Ag2Se exhibited excellent antimicrobial efficiency under visible light. Incorporating Ag2Se into ZnSe significantly enhanced the photoelectric performance of the catalyst, greatly accelerating the separation of the photogenerated electrons in the system. Active species removal experiments determined that ·O2- and H2O2 played crucial roles in photocatalytic antibacterial efficiency. Further investigation into the levels of cellular membrane peroxidation, bacterial morphology, and intracellular contents concentration revealed that during the photocatalytic antimicrobial process, reactive oxygen species initially oxidize phospholipids in the cell membrane, leading to damage to the external structure of the cell and leakage of the intracellular contents, ultimately resulting in bacteria inactivation. The photocatalytic antimicrobial process of ZnSe/Ag2Se fundamentally deviates from conventional methods, offering new insights into efficient disinfection and photocatalytic antimicrobial mechanisms.


Assuntos
Escherichia coli , Peróxido de Hidrogênio , Antibacterianos/farmacologia , Antibacterianos/química , Luz , Desinfecção/métodos , Catálise
10.
Front Psychiatry ; 14: 1233303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37743978

RESUMO

Introduction: In current digital era, adolescents' Internet use has increased exponentially, with the Internet playing a more and more important role in their education and entertainment. However, due to the ongoing cognitive, emotion, and social development processes, youth and adolescents are more vulnerable to Internet addiction. Attention has been paid to the increased use of Internet during the COVID-19 pandemic and the influence of Internet literacy in prevention and intervention of Internet addiction. Methods: The present study proposes a conceptual model to investigate the links between Internet literacy, Internet use of different purpose and duration, and Internet addiction among Chinese youth and adolescents. In this study, N = 2,276 adolescents studying in primary and secondary schools in East China were recruited, and they completed self-reports on sociodemographic characteristics, Internet literacy scale, Internet use, and Internet addiction scale. Results: The results showed a significant relationship between Internet use and Internet addiction. To be specific, the duration of Internet use significantly and positively affected Internet addiction. With different dimensions of Internet literacy required, entertainment-oriented Internet use had positive impact on Internet addiction, while education-oriented Internet use exerted negative effects on Internet addiction. As for Internet literacy, knowledge and skills for Internet (positively) and Internet self-management (negatively) significantly influenced the likelihood of Internet addiction. Discussion: The findings suggest that Internet overuse increases the risk of Internet addiction in youth and adolescents, while entertainment-oriented rather than education-oriented Internet use is addictive. The role of Internet literacy is complicated, with critical Internet literacy preventing the development of Internet addiction among youth and adolescents, while functional Internet literacy increasing the risk.

11.
Angew Chem Int Ed Engl ; 62(36): e202309026, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37460792

RESUMO

The keto-switched photocatalysis of covalent organic frameworks (COFs) for efficient H2 evolution was reported for the first time by engineering, at a molecular level, the local structure and component of the skeletal building blocks. A series of imine-linked BT-COFs were synthesized by the Schiff-base reaction of 1, 3, 5-benzenetrialdehyde with diamines to demonstrate the structural reconstruction of enol to keto configurations by alkaline catalysis. The keto groups of the skeletal building blocks served as active injectors, where hot π-electrons were provided to Pt nanoparticles (NPs) across a polyvinylpyrrolidone (PVP) insulting layer. The characterization results, together with density functional theory calculations, indicated clearly that the formation of keto-injectors not only made the conduction band level more negative, but also led to an inhomogeneous charge distribution in the donor-acceptor molecular building blocks to form a strong intramolecular built-in electric field. As a result, visible-light photocatalysis of TP-COFs-1 with one keto group in the skeletal building blocks was successfully enabled and achieved an impressive H2 evolution rate as high as 0.96 mmol g-1 h-1 . Also, the photocatalytic H2 evolution rates of the reconstructed BT-COFs-2 and -3 with two and three keto-injectors were significantly enhanced by alkaline post-treatment.

12.
J Colloid Interface Sci ; 649: 855-866, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37390533

RESUMO

Photocatalytic water splitting has been identified as a promising solution to tackle the current environmental and energy crisis in the world. However, the challenge of this green technology is the inefficient separation and utilization of photogenerated electron-hole pairs in photocatalysts. To overcome this challenge in one system, a ternary ZnO/Zn3In2S6/Pt material was prepared as a photocatalyst using a stepwise hydrothermal process and in-situ photoreduction deposition. The integrated S-scheme/Schottky heterojunction in the constructed ZnO/Zn3In2S6/Pt photocatalyst enabled it to exhibit efficient photoexcited charge separation/transfer. The evolved H2 reached up to 3.5 mmol g-1h-1. Meanwhile, the ternary composite possessed a high cyclic stability against photo-corrosion under irradiation. Practically, the ZnO/Zn3In2S6/Pt photocatalyst also showed great potential for H2 evolution while simultaneously degrading organic contaminants like bisphenol A. It is hoped in this work that the incorporation of Schottky junctions and S-scheme heterostructures in the construction of photocatalysts would lead to accelerated electron transfer and high photoinduced electron-hole pair separation, respectively, to synergistically enhance the performance of photocatalysts.

13.
Environ Sci Pollut Res Int ; 30(34): 82834-82850, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37335506

RESUMO

Biomethane generation by coal degradation not only can increase coalbed methane (CBM) reserves, namely, microbially enhanced coalbed methane (MECBM), but also has a significant effect on the pore structure of coal which is the key factor in CBM extraction. The transformation and migration of organics in coal are essential to pore development under the action of microorganisms. Here, the biodegradation of bituminous coal and lignite to produce methane and the cultivation with inhibition of methanogenic activity by 2-bromoethanesulfonate (BES) were performed to analyze the effect of biodegradation on coal pore development by determining the changes of the pore structure and the organics in culture solution and coal. The results showed that the maximum methane productions from bituminous coal and lignite were 117.69 µmol/g and 166.55 µmol/g, respectively. Biodegradation mainly affected the development of micropore whose specific surface area (SSA) and pore volume (PV) decreased while the fractal dimension increased. After biodegradation, various organics were generated which were partly released into culture solution while a large number of them remained in residual coal. The content of newly generated heterocyclic organics and oxygen-containing aromatics in bituminous coal was 11.21% and 20.21%. And the content of heterocyclic organics in bituminous coal was negatively correlated with SSA and PV but positively correlated with the fractal dimension which suggested that the retention of organics contributed greatly to the decrease of pore development. But the retention effect on pore structure was relatively poor in lignite. Besides, microorganisms were observed around fissures in both coal samples after biodegradation which would not be conducive to the porosity of coal on the micron scale. These results revealed that the effect of biodegradation on pore development of coal was governed by the combined action of organics degradation to produce methane and organics retention in coal whose contributions were antagonistic and determined by coal rank and pore aperture. The better development of MECBM needs to enhance organics biodegradation and reduce organics retention in coal.


Assuntos
Carvão Mineral , Metano , Biodegradação Ambiental , Metano/metabolismo
14.
Transl Vis Sci Technol ; 12(6): 17, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37358494

RESUMO

Purpose: To linguistically and culturally adapt the 31-item Singaporean Diabetic Retinopathy Knowledge and Attitudes (DRKA) questionnaire for a Chinese population and assess its reliability and validity using classical and modern psychometric theory. Methods: A total of 230 patients with diabetic retinopathy (DR) were recruited, and of these, 202 valid responses were analyzed. Rasch analysis and classical test theory (CTT) methods were used to analyze the fit statistics of the Knowledge (n = 22 items) and Attitudes (n = 9 items) scales, including the functionality of the response categories, fit statistics, person and item reliability and separation, unidimensionality, targeting, differential item functioning (DIF), internal consistency, convergent validity, and known-group validity. Results: After revision, both the Knowledge and Attitudes scales were unidimensional and had good measurement precision (Person Separation Index = 2.18 and 1.72) and internal consistency (Cronbach's α = 0.83 and 0.82). While the items in the Knowledge scale aptly targeted participants' ability level, targeting of the Attitudes scale was slightly suboptimal, with items too easy on average for participants' ability level. There were no issues with DIF and item fit, and the scales showed good known-group validity (scores increased as education level increased) and convergent validity (high correlation with the DRKA Practice questionnaire). Conclusions: After a thorough language and cultural verification process, the Chinese version of the DRKA is culturally appropriate and has good psychometric performance. Translational Relevance: The DRKA questionnaire may be useful to assess patients' DR-related knowledge and attitude level, as well as inform specific education interventions and optimize patients' ability to manage their condition.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Reprodutibilidade dos Testes , Retinopatia Diabética/diagnóstico , Idioma , Atitude , Linguística
15.
ACS Appl Mater Interfaces ; 15(20): 24494-24503, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37163238

RESUMO

Light-driven valorization conversion of CO2 is an encouraging carbon-negative pathway that shifts energy-reliance from fossil fuels to renewables. Herein, a hierarchical urchin-like hollow-TiO2@CdS/ZnS (HTO@CdS/ZnS) Z-scheme hybrid synthesized by an in situ self-assembly strategy presents superior photocatalytic CO2-to-CO activity with nearly 100% selectivity. Specifically, benefitting from the reasonable architectural and interface design, as well as surface modification, this benchmarked visible-light-driven photocatalyst achieves a CO output of 62.2 µmol·h-1 and a record apparent quantum yield of 6.54% with the Co(bpy)32+ (bpy = 2,2'-bipyridine) cocatalyst. It rivals all the incumbent selective photocatalytic conversion of CO2 to CO in the CH3CN/H2O/TEOA reaction systems. Specifically, the addition of HTO and stabilized ZnS enables the photocatalyst to effectively upgrade optical and electrical performances, contributing to efficient light-harvesting and photogenerated carrier separation, as well as interfacial charge transfer. The tremendous enhancement of photocatalytic performance reveals the superiority of the Z-scheme heterojunction assembled from HTO and CdS/ZnS, featuring the inner electric field derived from the band bending of HTO@CdS/ZnS make CdS resistant to photocorrosion. This study allows access to inspire studies on rationally modeling and constructing diverse heterostructures for the storage and conversion of renewables and chemicals.

16.
J Am Chem Soc ; 145(10): 5769-5777, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863033

RESUMO

A series of novel surface Ru-H bipyridine complexes-grafted TiO2 nanohybrids were for the first time prepared by a combined procedure of surface organometallic chemistry with post-synthetic ligand exchange for photocatalytic conversion of CO2 to CH4 with H2 as electron and proton donors under visible light irradiation. The selectivity toward CH4 increased to 93.4% by the ligand exchange of 4,4'-dimethyl-2,2'-bipyridine (4,4'-bpy) with the surface cyclopentadienyl (Cp)-RuH complex and the CO2 methanation activity was enhanced by 4.4-fold. An impressive rate of 241.2 µL·g-1·h-1 for CH4 production was achieved over the optimal photocatalyst. The femtosecond transient IR absorption results demonstrated that the hot electrons were fast injected in 0.9 ps from the photoexcited surface 4,4'-bpy-RuH complex into the conduction band of TiO2 nanoparticles to form a charge-separated state with an average lifetime of ca. 50.0 ns responsible for the CO2 methanation. The spectral characterizations indicated clearly that the formation of CO2•- radicals by single electron reduction of CO2 molecules adsorbed on surface oxygen vacancies of TiO2 nanoparticles was the most critical step for the methanation. Such radical intermediates were inserted into the explored Ru-H bond to generate Ru-OOCH species and finally CH4 and H2O in the presence of H2.

17.
Phys Chem Chem Phys ; 25(6): 4388-4407, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36723139

RESUMO

Solar photocatalysis is the most ideal solution to global energy concerns and environmental deterioration nowadays. The heterojunction combination has become one of the most successful and effective strategies to design and manufacture composite photocatalysts. Heterojunction structures are widely documented to markedly improve the photocatalytic behavior of materials by enhancing the separation and transfer of photogenerated charges, widening the light absorption range, and broadening redox potentials, which are attributed to the presence of both build-in electric fields at the interface of two different materials and the complementarity between different electron structures. So far, a large number of heterojunction photocatalytic materials have been reported and applied for water splitting, reduction of carbon dioxide and nitrogen, environmental cleaning, etc. This review outlines the recent accomplishments in the design and modification of interface structures in heterojunction photocatalysts, aiming to provide some useful perspectives for future research in this field.

18.
Artigo em Inglês | MEDLINE | ID: mdl-36673662

RESUMO

The burgeoning eHealth campaigns and the emerging daughter-to-mother health communication necessitate a close examination of the intricate mechanism behind recommending preventive behaviors in online settings. The present study addresses existing gaps by investigating how message characteristics and platform-generated virality cues jointly influence younger females' intention to recommend breast cancer screening to their mothers. Drawing on the extended parallel process model (EPPM) as the theoretical basis, a 2 (threat: low vs. high) × 2 (efficacy: low vs. high) × 2 (virality: low vs. high) randomized between-subjects experiment (n = 269) was performed. Results revealed a three-way interaction effect between threat, efficacy, and virality on message involvement. Message involvement was positively associated with recommendation intention and mediated the three-way interaction effect on recommendation intention. This study demonstrates that a high threat can initiate message involvement but fail to trigger recommendation intention. In contrast, a low-threat, high-efficacy, high-virality combination would yield a salutary outcome. Besides, the indispensable role of message involvement in the underlying psychological mechanism behind recommending preventive behaviors was reaffirmed. Theoretical and practical implications are further discussed.


Assuntos
Neoplasias da Mama , Intenção , Feminino , Humanos , Neoplasias da Mama/prevenção & controle , Sinais (Psicologia) , Detecção Precoce de Câncer , Medo/psicologia
19.
J Colloid Interface Sci ; 630(Pt B): 352-362, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36332428

RESUMO

Cu2O is one of the most promising photocatalysts for visible light driven CO2 conversion, but its practical application in artificial photosynthesis is challenged to severe photocorrosion. Herein, a Cu2O/LaTiO2N composite is successfully synthesized by loading Cu2O on LaTiO2N through an ascorbic acid reduction method, which significantly improves the stability and activity of Cu2O for visible light driven photocatalytic CO2 conversion, and shows higher photocatalytic performance than most Cu2O-based photocatalysts reported. The superior photocatalytic performance is attributed to the formation of type-II heterojunction between Cu2O and LaTiO2N, which facilitates the separation and transfer of photogenerated electrons and holes. This work provides an effective strategy for the construction of stable and efficient Cu2O-based photocatalysts.


Assuntos
Dióxido de Carbono , Cobre , Catálise , Luz
20.
Dalton Trans ; 51(46): 17836-17843, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36354056

RESUMO

The development of photocatalysts enabling stable and highly efficient water splitting hydrogen production remains an open challenge in the field of energy photocatalysis. Herein, Ni2P/γ-Ga2O3 nanosheets have been reported as excellent water splitting photocatalysts. Ni2P particles and γ-Ga2O3 nanosheets were synthesized by a facile hydrothermal process. The Ni2P/γ-Ga2O3 samples were prepared by an electrostatic self-assembly method with Ni2P particles and γ-Ga2O3 nanosheets as precursors. The 0.5 wt% Ni2P/γ-Ga2O3 sample shows a photocatalytic H2-production activity as high as 2.7 mmol g-1 h-1 in pure water and 12 mmol g-1 h-1 in an aqueous methanol solution under a 125 W high pressure mercury lamp, respectively, which are much higher than those of pure γ-Ga2O3 and Pt/γ-Ga2O3 nanosheets modified with a comparable Pt content. The Ni2P component plays a role as an electron collector that promotes efficient separation of photogenerated electrons and holes, and thereby improves the efficiency of photocatalytic hydrogen production. The effects of inorganic and organic sacrificial reagents on the reaction efficiency and stability were observed and discussed. This work shows that Ni2P as a cocatalyst substituting noble metals can greatly improve the photocatalytic hydrogen production efficiency of γ-Ga2O3 compared to that in pure water and a methanol-water solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...