Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3495, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311822

RESUMO

Highly efficient gas sensors able to detect and identify hazardous gases are crucial for numerous applications. Array of conventional single-output sensors is currently limited by problems including drift, large size, and high cost. Here, we report a sensor with multiple chemiresistive and potentiometric outputs for discriminative gas detection. Such sensor is applicable to a wide range of semiconducting electrodes and solid electrolytes, which allows to tailor and optimize the sensing pattern by tuning the material combination and conditions. The sensor performance is boosted by equipping a mixed-conducting perovskite electrode with reverse potentiometric polarity. A conceptual sensor with dual sensitive electrodes achieves superior three-dimensional (sub)ppm sensing and discrimination of humidity and seven hazardous gases (2-Ethylhexanol, ethanol, acetone, toluene, ammonia, carbon monoxide, and nitrogen dioxide), and enables accurate and early warning of fire hazards. Our findings offer possibilities to design simple, compact, inexpensive, and highly efficient multivariate gas sensors.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35849478

RESUMO

High-performance noble metal-free gas sensors are crucial for widespread applications in various areas. Non-Nernstian electrochemical sensors have attracted tremendous attention, but are limited by the high cost and low efficiency of Pt electrode. Moreover, responses from different electrodes usually have the same polarity, degrading the sensor performance. Here we report a reverse response on a series of mixed ionic-electronic conductors (MIECs). Exemplary SrFe0.5Ti0.5O3-δ (SFT50) perovskite shows excellent H2 sensing properties, including high sensitivity and selectivity, humidity resistance, and long-term stability. Strikingly, the response is positive, as opposed to the usual one. Such an unusual response is ascribed to the change of the surface electrostatic potential due to the gas chemical reaction, which outcompetes traditional mechanisms, thereby reversing the response polarity. A conceptual noble-metal-free sensor with dual oxide electrodes of opposite polarity is designed by substituting SFT50 for the benchmark Pt, achieving a 1.5-2.0× increase in H2 response, sensitivity, and selectivity and a low limit of detection of 16 ppb. The ideal unity of excellent sensing and unusual polarity for MIECs can be used to optimize the performance of a variety of conventional sensors while reducing the cost. Our findings provide new insights into electrochemical gas sensing and offer a facile approach for developing low-cost high-performance gas sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...