Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.645
Filtrar
1.
Commun Biol ; 7(1): 860, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003419

RESUMO

Alternative polyadenylation (APA) plays a crucial role in cancer biology. Here, we used data from the 3'aQTL-atlas, GTEx, and the China Nanjing Lung Cancer GWAS database to explore the association between apaQTL/eQTL-SNPs and the risk of lung adenocarcinoma (LUAD). The variant T allele of rs277646 in NIT2 is associated with an increased risk of LUAD (OR = 1.12, P = 0.015), lower PDUI values, and higher NIT2 expression. The 3'RACE experiment showed multiple poly (A) sites in NIT2, with the rs277646-T allele causing preferential use of the proximal poly (A) site, resulting in a shorter 3'UTR transcript. This leads to the loss of the hsa-miR-650 binding site, thereby affecting LUAD malignant phenotypes by regulating the expression level of NIT2. Our findings may provide new insights into understanding and exploring APA events in LUAD carcinogenesis.


Assuntos
Adenocarcinoma de Pulmão , Predisposição Genética para Doença , Neoplasias Pulmonares , Locos de Características Quantitativas , Humanos , Adenocarcinoma de Pulmão/genética , China/epidemiologia , População do Leste Asiático/genética , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Neoplasias Pulmonares/genética , Poliadenilação , Polimorfismo de Nucleotídeo Único
2.
Elife ; 122024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953517

RESUMO

The hippocampal-dependent memory system and striatal-dependent memory system modulate reinforcement learning depending on feedback timing in adults, but their contributions during development remain unclear. In a 2-year longitudinal study, 6-to-7-year-old children performed a reinforcement learning task in which they received feedback immediately or with a short delay following their response. Children's learning was found to be sensitive to feedback timing modulations in their reaction time and inverse temperature parameter, which quantifies value-guided decision-making. They showed longitudinal improvements towards more optimal value-based learning, and their hippocampal volume showed protracted maturation. Better delayed model-derived learning covaried with larger hippocampal volume longitudinally, in line with the adult literature. In contrast, a larger striatal volume in children was associated with both better immediate and delayed model-derived learning longitudinally. These findings show, for the first time, an early hippocampal contribution to the dynamic development of reinforcement learning in middle childhood, with neurally less differentiated and more cooperative memory systems than in adults.


Assuntos
Corpo Estriado , Hipocampo , Aprendizagem , Reforço Psicológico , Humanos , Criança , Hipocampo/fisiologia , Estudos Longitudinais , Feminino , Masculino , Corpo Estriado/fisiologia , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Tomada de Decisões/fisiologia , Tempo de Reação/fisiologia
3.
Adv Sci (Weinh) ; : e2404558, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965690

RESUMO

Harmonic generation and utilization are significant topics in nonlinear science. Although the progress in the microwave region has been expedited by the development of time-modulated metasurfaces, one major issue of these devices is the strong entanglement of multiple harmonics, leading to criticism of their use in frequency-division multiplexing (FDM) applications. Previous studies have attempted to overcome this limitation, but they suffer from designing complexity or insufficient controlling capability. Here a new space-time-coding metasurface (STCM) is proposed to independently and precisely synthesize not only the phases but also the amplitudes of various harmonics. This promising feature is successfully demonstrated in wireless space- and frequency-division multiplexing experiments, where modulated and unmodulated signals are simultaneously transmitted via different harmonics using a shared STCM. To illustrate the advantages, binary frequency shift keying (BFSK) and quadrature phase shift keying (QPSK) modulation schemes are respectively implemented. Behind the intriguing functionality, the mechanism of the space-time coding strategy and the analytical designing method are elaborated, which are validated numerically and experimentally. It is believed that the achievements can potentially propel the time-vary metasurfaces in the next-generation wireless applications.

4.
Adv Sci (Weinh) ; : e2305353, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965806

RESUMO

A fundamental understanding of the underlying mechanisms involved in biological invasions is crucial to developing effective risk assessment and control measures against invasive species. The fall armyworm (FAW), Spodoptera frugiperda, is a highly invasive pest that has rapidly spread from its native Americas into much of the Eastern Hemisphere, with a highly homogeneous nuclear genetic background. However, the exact mechanism behind its rapid introduction and propagation remains unclear. Here, a systematic investigation is conducted into the population dynamics of FAW in China from 2019 to 2021 and found that FAW individuals carrying "rice" mitochondria (FAW-mR) are more prevalent (>98%) than that with "corn" mitochondria (FAW-mC) at the initial stage of the invasion and in newly-occupied non-overwintering areas. Further fitness experiments show that the two hybrid-strains of FAW exhibit different adaptions in the new environment in China, and this may have been facilitated by amino acid changes in mitochondrial-encoded proteins. FAW-mR used increases energy metabolism, faster wing-beat frequencies, and lower wing loadings to drive greater flight performance and subsequent rapid colonization of new habitats. In contrast, FAW-mC individuals adapt with more relaxed mitochondria and shuttle energetics into maternal investment, observed as faster development rate and higher fecundity. The presence of two different mitochondria types within FAW has the potential to significantly expand the range of damage and enhance competitive advantage. Overall, the study describes a novel invasion mechanism displayed by the FAW population that facilitates its expansion and establishment in new environments.

5.
World J Gastrointest Oncol ; 16(6): 2610-2630, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994168

RESUMO

BACKGROUND: Gastric signet ring cell carcinoma (GSRC) represents a specific subtype of gastric cancer renowned for its contentious epidemiological features, treatment principles, and prognostic factors. AIM: To investigate the epidemiology of GSRC and establish an improved model for predicting the prognosis of patients with locally advanced GSRC (LAGSRC) after surgery. METHODS: The annual rates of GSRC incidence and mortality, covering the years 1975 to 2019, were extracted from the Surveillance, Epidemiology, and End Results (SEER) database to explore the temporal trends in both disease incidence and mortality rates using Joinpoint software. The clinical data of 3793 postoperative LAGSRC patients were collected from the SEER database for the analysis of survival rates. The Cox regression model was used to explore the independent prognostic factors for overall survival (OS). The risk factors extracted were used to establish a prognostic nomogram. RESULTS: The overall incidence of GSRC increased dramatically between 1975 and 1998, followed by a significant downward trend in incidence after 1998. In recent years, there has been a similarly optimistic trend in GSRC mortality rates. The trend in GSRC showed discrepancies based on age and sex. Receiver operating characteristic curves, calibration curves, and decision curve analysis for 1-year, 3-year, and 5-year OS demonstrated the high discriminative ability and clinical utility of this nomogram. The area under the curve indicated that the performance of the new model outperformed that of the pathological staging system. CONCLUSION: The model we established can aid clinicians in the early prognostication of LAGSRC patients, resulting in improved clinical outcomes by modifying management strategies and patient health care.

6.
Open Forum Infect Dis ; 11(7): ofae333, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39015347

RESUMO

Background: Predicting cause-specific mortality among people with HIV (PWH) could facilitate targeted care to improve survival. We assessed discrimination of the Veterans Aging Cohort Study (VACS) Index 2.0 in predicting cause-specific mortality among PWH on antiretroviral therapy (ART). Methods: Using Antiretroviral Therapy Cohort Collaboration data for PWH who initiated ART between 2000 and 2018, VACS Index 2.0 scores (higher scores indicate worse prognosis) were calculated around a randomly selected visit date at least 1 year after ART initiation. Missingness in VACS Index 2.0 variables was addressed through multiple imputation. Cox models estimated associations between VACS Index 2.0 and causes of death, with discrimination evaluated using Harrell's C-statistic. Absolute mortality risk was modelled using flexible parametric survival models. Results: Of 59 741 PWH (mean age: 43 years; 80% male), the mean VACS Index 2.0 at baseline was 41 (range: 0-129). For 2425 deaths over 168 162 person-years follow-up (median: 2.6 years/person), AIDS (n = 455) and non-AIDS-defining cancers (n = 452) were the most common causes. Predicted 5-year mortality for PWH with a mean VACS Index 2.0 score of 38 at baseline was 1% and approximately doubled for every 10-unit increase. The 5-year all-cause mortality C-statistic was .83. Discrimination with the VACS Index 2.0 was highest for deaths resulting from AIDS (0.91), liver-related (0.91), respiratory-related (0.89), non-AIDS infections (0.87), and non-AIDS-defining cancers (0.83), and lowest for suicides/accidental deaths (0.65). Conclusions: For deaths among PWH, discrimination with the VACS Index 2.0 was highest for deaths with measurable physiological causes and was lowest for suicide/accidental deaths.

7.
World J Clin Cases ; 12(20): 4289-4300, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39015926

RESUMO

BACKGROUND: Stroke often results in significant respiratory dysfunction in patients. Respiratory muscle training (RMT) has been proposed as a rehabilitative intervention to address these challenges, but its effectiveness compared to routine training remains debated. This systematic review and meta-analysis aim to evaluate the effects of RMT on exercise tolerance, muscle strength, and pulmonary function in post-stroke patients. AIM: To systematically assess the efficacy of RMT in improving exercise tolerance, respiratory muscle strength, and pulmonary function in patients recovering from a stroke, and to evaluate whether RMT offers a significant advantage over routine training modalities in enhancing these critical health outcomes in the post-stroke population. METHODS: Following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines, a comprehensive search across PubMed, Embase, Web of Science, and the Cochrane Library was conducted on October 19, 2023, without temporal restrictions. Studies were selected based on the predefined inclusion and exclusion criteria focusing on various forms of RMT, control groups, and outcome measures [including forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), maximal voluntary ventilation (MVV), peak expiratory flow (PEF), maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP), and 6-min walking test (6MWT)]. Only randomized controlled trials (RCTs) were included. Data extraction and quality assessment were conducted independently by two reviewers using the Cochrane Collaboration's risk of bias tool. Statistical analyses, including those using the fixed-effect and random-effects models, sensitivity analysis, and publication bias assessment, were performed using Review Manager software. RESULTS: A total of 15 RCTs were included. Results indicated significant improvements in MIP (12.51 cmH2O increase), MEP (6.24 cmH2O increase), and various pulmonary function parameters (including FEV1, FVC, MVV, and PEF). A substantial increase in 6MWT distance (22.26 meters) was also noted. However, the heterogeneity among studies was variable, and no significant publication bias was detected. CONCLUSION: RMT significantly enhances walking ability, respiratory muscle strength (MIP and MEP), and key pulmonary function parameters (FEV1, FVC, MVV, and PEF) in post-stroke patients. These findings support the incorporation of RMT into post-stroke rehabilitative protocols.

8.
Water Res ; 262: 122089, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018586

RESUMO

Microbes possessing electron transfer capabilities hold great promise for remediating subsurface contaminated by redox-active radionuclides such as technetium-99 (99TcO4-) through bio-transformation of soluble contaminants into their sparingly soluble forms. However, the practical application of this concept has been impeded due to the low electron transfer efficiency and long-term product stability under various biogeochemical conditions. Herein, we proposed and tested a pyrite-stimulated bio-immobilization strategy for immobilizing ReO4- (a nonradioactive analogue of 99TcO4-) using sulfate-reducing bacteria (SRB), with a focus on pure-cultured Desulfovibrio vulgaris. Pyrite acted as an effective stimulant for the bio-transformation of ReO4-, boosting the removal rate of ReO4- (50 mg/L) in a solution from 2.8 % (without pyrite) to 100 %. Moreover, the immobilized products showed almost no signs of remobilization during 168 days of monitoring. Dual lines of evidence were presented to elucidate the underlying mechanisms for the pyrite-enhanced bio-activity. Transcriptomic analysis revealed a global upregulation of genes associated with electron conductive cytochromes c network, extracellular tryptophan, and intracellular electron transfer units, leading to enhanced ReO4- bio-reduction. Spectroscopic analysis confirmed the long-term stability of the bio-immobilized products, wherein ReO4- is reduced to stable Re(IV) oxides and Re(IV) sulfides. This work provides a novel green strategy for remediation of radionuclides- or heavy metals-contaminated sites.

9.
Plant Physiol Biochem ; 214: 108932, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018777

RESUMO

Understanding the regulatory biosynthesis mechanisms of active compounds in herbs is vital for the preservation and sustainable use of natural medicine resources. Diterpenoids, which play a key role in plant growth and resistance, also serve as practical products for humans. Tanshinone, a class of abietane-type diterpenes unique to the Salvia genus, such as Salvia miltiorrhiza, is an excellent model for studying diterpenoids. In this study, we discovered that a transcription factor, SmERF106, responds to MeJA induction and is located in the nucleus. It exhibits a positive correlation with the expression of SmKSL1 and SmIDI1, which are associated with tanshinone biosynthesis. We performed DNA affinity purification sequencing (DAP-seq) to predict genes that may be transcriptionally regulated by SmERF106. Our cis-elements analysis suggested that SmERF106 might bind to GCC-boxes in the promoters of SmKSL1 and SmIDI1. This indicates that SmKSL1 and SmIDI1 could be potential target genes regulated by SmERF106 in the tanshinone biosynthesis pathway. Their interaction was then demonstrated through a series of in vitro and in vivo binding experiments, including Y1H, EMSA, and Dual-LUC. Overexpression of SmERF106 in the hairy root of S. miltiorrhiza led to a significant increase in tanshinone content and the transcriptional levels of SmKSL1 and SmIDI1. In summary, we found that SmERF106 can activate the transcription of SmKSL1 and SmIDI1 in response to MeJA induction, thereby promoting tanshinone biosynthesis. This discovery provides new insights into the regulatory mechanisms of tanshinones in response to JA and offers a potential gene tool for tanshinone metabolic engineering strategy.

10.
Plant Dis ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39021153

RESUMO

Polygonatum kingianum Coll. et Hemsl., a Polygonatum species in the Asparagaceae family, plays an important role in Chinese herbal medicine (Zhao et al. 2018). P. kingianum is widely planted in the Southwestern China. In September 2023, we observed a leaf spot of P. kingianum with disease incidence of 100%, and disease index reached 60 in commercial plantings in Kunming, Yunnan province, China (24.3610°N, 102.3740°E). In the initial stage of infection, symptoms manifested as a small circular brown spot. As the spots gradually expanded, they formed oval to irregular shaped lesions with grayish-white or dark-brown borders. Progressively the entire leaf withered and died. For identification of the causal agent of the leaf spot, leaf sections (5×5 mm2) were cut from the margin of the lesion and soaked in 75% ethanol for 10 s, 1% sodium hypochlorite for 3 min, washed with sterile distilled water, dried on sterilized tissue paper and placed on potato dextrose agar (PDA). The Petri dishes were then incubated at 28℃ for 3 days with a 12-h photoperiod. A predominant fungus was isolated from 95% of the samples. Three monosporic isolates were screened using a single-spore isolation method. After 4 days of incubation the colonies were white, after 7 days turned yellow-white. Conidia were black-brown, oblong or fusiform, with 3-7 transverse septa and 0-3 longitudinal septa, with dimensions of 19.5 to 49.5 × 8.7 to 17.6 µm (n = 30). Total genomic DNA of these three isolates was extracted from mycelia by the cetyltrimethylammonium bromide (CTAB) protocol. The nucleotide sequences of the elongation factor 1-alpha (EF1α), nuclear ribosomal internal transcribed spacer (ITS), 28S nuclear ribosomal large subunit rRNA gene (LSU), 18S nuclear ribosomal small subunit rRNA gene (SSU), and the second largest subunit of nuclear DNA-directed RNA polymerase II (RPB2) gene regions were amplified using the primer pairs EF1-728F/EF1-986R (Carbone and Kohn 1999), ITS1/ITS4 (White et al. 1990), LR0R/LR5 (Schoch et al. 2012), NS1/NS4 (Schoch et al. 2012), and fRPB2-5F/fRPB2-7Cr (Liu et al. 1999), respectively. Amplicons were cloned in a pMDTM19-T vector (code no. 6013, Takara, Kusatsu, Japan) and bidirectionally sequenced. All three isolates had identical nucleotide sequences. Sequences from one isolate (PkF03) were deposited in GenBank. BLASTn analyses showed that sequences of EF1α (GenBank accession no. PP695240), ITS (PP694046), LSU (PP683406), SSU (PP683407), and RPB2 (PP695241) of isolate PkF03 were 99.6 (KP125134), 100 (KP124358), 100 (KP124510), 99.9 (KP124980), and 100% (KP124826), respectively, identical with Alternaria alternata (Fr.) Keissl. strain CBS 118815. Based on the nucleotide sequences of EF1α, ITS, LSU, SSU, and RPB2, a maximum likelihood phylogenetic tree was constructed using MEGAX with Tamura-Nei model. Isolate PkF03 was grouped in the same clade as A. alternata. According to the morphology and sequence analyses isolate PkF03 was identified as A. alternata (Woudenberg et al. 2013). To determine pathogenicity of isolate PkF03, a spore suspension (106 spores/mL) was sprayed on 1-year-old healthy leaves of P. kingianum. The control leaves were sprayed with sterile water. All plants were incubated at 28℃, 70% relative humidity, and a 12-h photoperiod. The pathogenicity tests were repeated three times with six plants in each treatment. Fifteen days post-inoculation, the inoculated leaves showed brown-yellow lesions, whereas the control leaves remained symptomless. A. alternata was reisolated from infected leaves. To our knowledge, this is the first report of A. alternata causing leaf spot on P. kingianum in Kunming, China. The results provide a scientific basis for prevention and control of the disease.

11.
Adv Healthc Mater ; : e2401275, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979868

RESUMO

Compromised osteogenesis and angiogenesis is the character of stem cell senescence, which brought difficulties for bone defects repairing in senescent microenvironment. As the most abundant bone-related miRNA, miRNA-21-5p plays a crucial role in inducing osteogenic and angiogenic differentiation. However, highly efficient miR-21-5p delivery still confronts challenges including poor cellular uptake and easy degradation. Herein, TDN-miR-21-5p nanocomplex is constructed based on DNA tetrahedral (TDN) and has great potential in promoting osteogenesis and alleviating senescence of senescent bone marrow stem cells (O-BMSCs), simultaneously enhancing angiogenic capacity of senescent endothelial progenitor cells (O-EPCs). Of note, the activation of AKT and Erk signaling pathway may direct regulatory mechanism of TDN-miR-21-5p mediated osteogenesis and senescence of O-BMSCs. Also, TDN-miR-21-5p can indirectly mediate osteogenesis and senescence of O-BMSCs through pro-angiogenic growth factors secreted from O-EPCs. In addition, gelatin methacryloyl (GelMA) hydrogels are mixed with TDN and TDN-miR-21-5p to fabricate delivery scaffolds. TDN-miR-21-5p@GelMA scaffold exhibits greater bone repair with increased expression of osteogenic- and angiogenic-related markers in senescent critical-size cranial defects in vivo. Collectively, TDN-miR-21-5p can alleviate senescence and induce osteogenesis and angiogenesis in senescent microenvironment, which provides a novel candidate strategy for senescent bone repair and widen clinical application of TDNs-based gene therapy.

12.
Am J Cancer Res ; 14(6): 2790-2804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005662

RESUMO

Metastasis is a principal factor in the poor prognosis of colorectal cancer. Recent studies have found microbial metabolites regulate colorectal cancer metastasis. By analyzing metabolomics data, we identified an essential fecal metabolite citraconate that potentially promotes colorectal cancer metastasis. Next, we tried to reveal its effect on colorectal cancer and the underlying mechanism. Firstly, the response of colorectal cancer cells (HCT116 and MC38 cells) to citraconate was assessed by Cell Counting Kit-8 assay, clonogenic assay, transwell migration and invasion assay. Moreover, we utilized an intra-splenic injection model to evaluate the effect of citraconate on colorectal cancer liver metastasis in vivo. Then molecular approaches were employed, including RNA sequencing, mass spectrometry-based metabolomics, western blot, quantitative real-time PCR, cell ferrous iron colorimetric assay and intracellular malondialdehyde measurement. In vitro, citraconate promotes the growth of colorectal cancer cells. In vivo, citraconate aggravated liver metastasis of colorectal cancer. Mechanistically, downstream genes of NRF2, NQO1, GCLC, and GCLM high expression induced by citraconate resulted in resistance to ferroptosis of colorectal cancer cells. In summary, citraconate promotes the malignant progression of colorectal cancer through NRF2-mediated ferroptosis resistance in colorectal cancer cells. Furthermore, our study indicates that fecal metabolite may be crucial in colorectal cancer development.

13.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39001013

RESUMO

Ischemic stroke is a type of brain dysfunction caused by pathological changes in the blood vessels of the brain which leads to brain tissue ischemia and hypoxia and ultimately results in cell necrosis. Without timely and effective treatment in the early time window, ischemic stroke can lead to long-term disability and even death. Therefore, rapid detection is crucial in patients with ischemic stroke. In this study, we developed a deep learning model based on fusion features extracted from electroencephalography (EEG) signals for the fast detection of ischemic stroke. Specifically, we recruited 20 ischemic stroke patients who underwent EEG examination during the acute phase of stroke and collected EEG signals from 19 adults with no history of stroke as a control group. Afterwards, we constructed correlation-weighted Phase Lag Index (cwPLI), a novel feature, to explore the synchronization information and functional connectivity between EEG channels. Moreover, the spatio-temporal information from functional connectivity and the nonlinear information from complexity were fused by combining the cwPLI matrix and Sample Entropy (SaEn) together to further improve the discriminative ability of the model. Finally, the novel MSE-VGG network was employed as a classifier to distinguish ischemic stroke from non-ischemic stroke data. Five-fold cross-validation experiments demonstrated that the proposed model possesses excellent performance, with accuracy, sensitivity, and specificity reaching 90.17%, 89.86%, and 90.44%, respectively. Experiments on time consumption verified that the proposed method is superior to other state-of-the-art examinations. This study contributes to the advancement of the rapid detection of ischemic stroke, shedding light on the untapped potential of EEG and demonstrating the efficacy of deep learning in ischemic stroke identification.


Assuntos
Aprendizado Profundo , Eletroencefalografia , AVC Isquêmico , Humanos , Eletroencefalografia/métodos , AVC Isquêmico/fisiopatologia , AVC Isquêmico/diagnóstico , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/diagnóstico , Processamento de Sinais Assistido por Computador , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/diagnóstico
14.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001121

RESUMO

This paper proposes a solution to the problem of mobile robot navigation and trajectory interpolation in dynamic environments with large scenes. The solution combines a semantic laser SLAM system that utilizes deep learning and a trajectory interpolation algorithm. The paper first introduces some open-source laser SLAM algorithms and then elaborates in detail on the general framework of the SLAM system used in this paper. Second, the concept of voxels is introduced into the occupation probability map to enhance the ability of local voxel maps to represent dynamic objects. Then, in this paper, we propose a PointNet++ point cloud semantic segmentation network combined with deep learning algorithms to extract deep features of dynamic point clouds in large scenes and output semantic information of points on static objects. A descriptor of the global environment is generated based on its semantic information. Closed-loop completion of global map optimization is performed to reduce cumulative error. Finally, T-trajectory interpolation is utilized to ensure the motion performance of the robot and improve the smooth stability of the robot trajectory. The experimental results indicate that the combination of the semantic laser SLAM system with deep learning and the trajectory interpolation algorithm proposed in this paper yields better graph-building and loop-closure effects in large scenes at SIASUN large scene campus. The use of T-trajectory interpolation ensures vibration-free and stable transitions between target points.

15.
J Dairy Sci ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004124

RESUMO

Regarding the limited information on species protein differences between sheep, goat, and cow milk, the differentially expressed proteins in sheep, goat, and cow milk and their functional differences are analyzed using label-free proteomics technology to identify potential biomarkers. 770 proteins and 2914 peptide segments were identified. The statistical analysis showed significant differences in the relative abundances of the 74 proteins among the sheep, goat, and cow milk. CSN3 and LALBA can be used as potential biomarkers for goat milk, XDH can be used as potential biomarkers for cow milk, and CTSB and BPIFB1 can be used as potential biomarkers for sheep milk. The functional analysis using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes showed that these significantly different proteins were enriched by different pathways including thyroid hormone synthesis and glycerol phospholipid metabolism. The data revealed differences in the amounts and physiological functions of the milk proteins of different species, which may provide an important basis for research on the nutritional composition of dairy products and adulteration identification technology.

16.
J Am Chem Soc ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004825

RESUMO

High-entropy intermetallic (HEI) nanocrystals, composed of multiple elements with an ordered structure, are of immense interest in heterogeneous catalysis due to their unique geometric and electronic structures and the cocktail effect. Despite tremendous efforts dedicated to regulating the metal composition and structures with advanced synthetic methodologies to improve the performance, the surface structure, and local chemical order of HEI and their correlation with activity at the atomic level remain obscure yet challenging. Herein, by determining the three-dimensional (3D) atomic structure of quinary PdFeCoNiCu (PdM) HEI using atomic-resolution electron tomography, we reveal that the local chemical order of HEI regulates the surface electronic structures, which further mediates the alkyl-substitution-dependent alkyne semihydrogenation. The 3D structures of HEI PdM nanocrystals feature an ordered (intermetallic) core enclosed by a disordered (solid-solution) shell rather than an ordered surface. The lattice mismatch between the core and shell results in apparent near-surface distortion. The chemical order of the intermetallic core increases with annealing temperature, driving the electron redistribution between Pd and M at the surface, but the surface geometrical (chemically disordered) configurations and compositions are essentially unchanged. We investigate the catalytic performance of HEI PdM with different local chemical orders toward semihydrogenation across a broad range of alkynes, finding that the electron density of surface Pd and the hindrance effect of alkyl substitutions on alkynes are two key factors regulating selective semihydrogenation. We anticipate that these findings on surface atomic structure will clarify the controversy regarding the geometric and/or electronic effects of HEI catalysts and inspire future studies on tuning local chemical order and surface engineering toward enhanced catalysts.

17.
Small ; : e2403881, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004854

RESUMO

Orbital angular momentum flow can be used to develop a low-dissipation electronic information device by manipulating the orbital current. However, efficiently generating and fully harnessing orbital currents is a formidable challenge. In this study, an approach is presented that induces a colossal orbital current by gradient oxidation in Pt/Ta to enhance spin-orbit torque (SOT) and achieve high-efficiency magnetization switching. The maximum efficiency of the SOT before and after the gradient oxidation of Ta is improved relative to that of Pt by ≈600 and 1200%, respectively. The large SOT originates from the colossal orbital current because of the orbital Rashba-Edelstein effect induced by the gradient oxidation of Ta. In addition, a large spin-to-charge conversion efficiency is observed in yttrium iron garnet/Pt/TaOx because of the inverse orbital Rashba-Edelstein effect. Harnessing the orbital current can help effectively minimize the critical current density of the current-induced magnetization switching to 2.26-1.08 × 106 A cm-2, marking a 12-fold reduction compared to that using Pt. This findings provide a new path for research on low-dissipation spin-orbit devices and improve the tunability of orbital current generation.

18.
Semin Arthritis Rheum ; 68: 152500, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39002345

RESUMO

BACKGROUND: Immunosuppressants, biologic agents, antifibrotic drugs, and other drugs can be used to treat autoimmune disease-associated interstitial lung disease (ILD), but the preferred treatment is uncertain. We aimed to evaluate the efficacy and safety of multiple drugs in the treatment of autoimmune disease-associated ILD. METHODS: PubMed, Embase, Web of Science, Cochrane Central Register of Controlled Trials and ClinicalTrials.gov were searched for relevant randomized controlled trials (RCTs) from inception to July 2023. Primary outcomes were percentage of predicted forced vital capacity (FVC% predicted) and discontinuations for adverse events (AEs). We estimated summary mean differences (MDs) and odds ratios (ORs) using network meta-analysis with fixed effects. RESULTS: The analysis is based on 15 RCTs involving 1832 patients. In terms of FVC% predicted, mycophenolate mofetil (MMF) (MD 1.27, 95 % credible interval [CrI] 0.08 to 2.43), cyclophosphamide (1.89, 0.10 to 3.68), rituximab (9.29, 2.79 to 15.80), tocilizumab (6.30, 3.27 to 9.34), nintedanib (1.71, 0.54 to 2.88), pirfenidone (2.03, 0.65 to 3.40) and nintedanib+MMF (2.43, 0.95 to 3.89) were more effective than placebo. Analysis based on a small sample size showed that riociguat also had good therapeutic potential when compared with placebo. By contrast, bosentan and pomalidomide showed no significant difference compared with placebo. Regarding discontinuations for AEs, nintedanib (OR 2.09, 95 %CrI 1.20 to 3.73) and pirfenidone (3.46, 1.31 to 10.56) were associated with higher dropout rates than placebo, and the combination therapy of nintedanib+MMF did not increase the risk of AEs compared with nintedanib monotherapy. CONCLUSIONS: MMF, cyclophosphamide, rituximab, tocilizumab, nintedanib and pirfenidone are effective in the treatment of autoimmune disease-associated ILD. The efficacy of riociguat and the superiority of combination therapy need to be demonstrated in more RCTs. The tolerance of nintedanib and pirfenidone is a concern, but most of their AEs are mild and controllable.

19.
J Biochem Mol Toxicol ; 38(7): e23759, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39003567

RESUMO

Fetal growth restriction (FGR) severely affects the health outcome of newborns and represents a major cause of perinatal morbidity. The precise involvement of circCULT1 in the progression of FGR remains unclear. We performed next-generation sequencing and RT-qPCR to identify differentially expressed circRNAs in placental tissues affected by FGR by comparing them with unaffected counterparts. Edu, flow cytometry, and transwell assay were conducted to detect HTR8/SVneo cell's function in regard to cell proliferation, migration, and invasion. The interaction between circCUL1 and hsa-miR-30e-3p was assessed through dual-luciferase reporter assays, validation of the interaction between circCUL1 and ANXA1 was performed using RNA pulldown and immunoprecipitation assays. Western blot analysis was performed to evaluate protein levels of autophagy markers and components of the PI3K/AKT signaling pathway. A knockout (KO) mouse model was established for homologous mmu-circ-0001469 to assess fetal mouse growth and development indicators. Our findings revealed an upregulation of circCUL1 expression in placental tissues from patients with FGR. We found that suppression of circCUL1 increased the trophoblast cell proliferation, migration, and invasion, circCUL1 could interact with hsa-miR-30e-3p. Further, circCUL1 stimulated autophagy, modulating trophoblast cell autophagy via the ANXA1/PI3K/AKT pathway, and a notable disparity was observed, with KO mice displaying accelerated embryo development and exhibiting heavier placentas in comparison to wild-type C57BL/6 mice. By modulating the ANXA1/PI3K/AKT signaling pathway through the interaction with hsa-miR-30e-3p, circCUL1 promotes autophagy while concurrently suppressing trophoblast cell proliferation, migration, and invasion. These findings offer novel insights into potential diagnostic markers and therapeutic targets for FGR research.


Assuntos
Autofagia , Movimento Celular , Retardo do Crescimento Fetal , MicroRNAs , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Trofoblastos , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/patologia , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Trofoblastos/metabolismo , Trofoblastos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Gravidez , Feminino , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , RNA Circular/genética , RNA Circular/metabolismo , Camundongos Knockout , Anexina A1
20.
PLoS One ; 19(7): e0301653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38990870

RESUMO

BACKGROUND: To systematically review and perform a meta-analysis on the predictive value of the primary Gleason grade (PGG) at the positive surgical margin (PSM), length of PSM, number of PSMs, and pathological stage of the primary tumor on biochemical recurrence (BCR) in patients with prostate cancer (PCa) after radical prostatectomy (RP). METHODS: A systematic literature search was performed using electronic databases, including PubMed, EMBASE, Cochrane Library, and Web of Science, from January 1, 2005, to October 1, 2023. The protocol was pre-registered in PROSPERO. Subgroup analyses were performed according to the different treatments and study outcomes. Pooled hazard ratios with 95% confidence intervals were extracted from multivariate analyses, and a fixed or random effect model was used to pool the estimates. Subgroup analyses were performed to explore the reasons for the heterogeneity. RESULTS: Thirty-one studies that included 50,028 patients with PCa were eligible for this meta-analysis. The results showed that, compared to PGG3, PGG4/5 was associated with a significantly increased risk of BCR. Compared with PSM ≤3 mm, PSM ≥3 mm was associated with a significantly increased risk of BCR. Compared with unifocal PSM, multifocal PSM (mF-PSM) was associated with a significantly increased risk of BCR. In addition, pT >2 was associated with a significantly increased risk of BCR compared to pT2. Notably, the findings were found to be reliable based on the sensitivity and subgroup analyses. CONCLUSIONS: PGG at the PSM, length of PSM, number of PSMs, and pathological stage of the primary tumor in patients with PCa were found to be associated with a significantly increased risk of BCR. Thus, patients with these factors should be treated differently in terms of receiving adjunct treatment and more frequent monitoring. Large-scale, well-designed prospective studies with longer follow-up periods are needed to validate the efficacy of these risk factors and their effects on patient responses to adjuvant and salvage therapies and other oncological outcomes.


Assuntos
Margens de Excisão , Recidiva Local de Neoplasia , Prostatectomia , Neoplasias da Próstata , Humanos , Prostatectomia/métodos , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Masculino , Recidiva Local de Neoplasia/patologia , Gradação de Tumores , Estadiamento de Neoplasias , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...