Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.018
Filtrar
1.
Neural Regen Res ; 20(3): 845-857, 2025 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38886957

RESUMO

JOURNAL/nrgr/04.03/01300535-202503000-00029/figure1/v/2024-06-17T092413Z/r/image-tiff It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke. Indeed, previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue. Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke, but its specific role and mechanism are currently unclear. To simulate stroke in vivo, a middle cerebral artery occlusion rat model was established, with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke. We found that in the early stage (within 24 hours) of ischemic stroke, neutrophils produced a large amount of hypochlorous acid, while in the recovery phase (10 days after stroke), microglia were activated and produced a small amount of hypochlorous acid. Further, in acute stroke in rats, hypochlorous acid production was prevented using a hypochlorous acid scavenger, taurine, or myeloperoxidase inhibitor, 4-aminobenzoic acid hydrazide. Our results showed that high levels of hypochlorous acid (200 µM) induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation. However, in the recovery phase of the middle cerebral artery occlusion model, a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes. This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury. Lower levels of hypochlorous acid (5 and 100 µM) promoted nuclear translocation of ß-catenin. By transfection of single-site mutation plasmids, we found that hypochlorous acid induced chlorination of the ß-catenin tyrosine 30 residue, which promoted nuclear translocation. Altogether, our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function.

2.
Neural Regen Res ; 20(1): 224-233, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767487

RESUMO

JOURNAL/nrgr/04.03/01300535-202501000-00030/figure1/v/2024-05-14T021156Z/r/image-tiff Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery. Our previous in vitro study demonstrated that exosomes/small extracellular vesicles (sEVs) isolated from cerebral endothelial cells (CEC-sEVs) of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a (miR-27a) is an elevated miRNA in ischemic CEC-sEVs. In the present study, we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a (27a-sEVs) further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs. 27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector. Small EVs isolated from CECs transfected with a scramble vector (Scra-sEVs) were used as a control. Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs. An array of behavior assays was used to measure neurological function. Compared with treatment of ischemic stroke with Scra-sEVs, treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side, and significantly improved neurological outcomes. In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth. Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone, while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a, and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone. Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs. Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes. Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.

3.
J Sci Food Agric ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953304

RESUMO

BACKGROUND: Laminaria japonica polysaccharide, which is an important bioactive substance of Laminaria japonica with anti-inflammatory and antioxidant effects. In this study, the molecular weight, functional groups and surface morphology were investigated to evaluate the digestive properties of Laminaria japonica polysaccharide before and after steam explosion. RESULTS: The results indicated that the Laminaria japonica polysaccharide entered the large intestine to be utilized by the gut microbiota after passing through the oral, gastric and small intestinal. Meanwhile, Laminaria japonica polysaccharide of steam explosion promoted the growth of beneficial bacteria Phascolarctobacterium and Intestinimonas, and increased the content of acetic, propionic and butyric acids, which was 2.29-folds, 2.60-folds and 1.63-folds higher than the control group after 48 h of fermentation. CONCLUSION: This study reveals that the effect of steam explosion pretreatment on the digestion in vitro and gut microbiota of Laminaria japonica polysaccharide will provide a basic theoretical basis for the potential application of Laminaria japonica polysaccharide as a prebiotic in the food industry. © 2024 Society of Chemical Industry.

4.
Acta Neurol Belg ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954167

RESUMO

PURPOSE: To preliminarily investigate the reliability and validity of the Chinese version of the Cerebellar Cognitive Affective Syndrome Scale (CCAS scale) in the cerebellar injury population. METHODS: In this study, 40 patients with cerebellar injury and 39 normal individuals hospitalized in a stroke center were assessed using the Chinese version of the CCAS scale A, MMSE, and PHQ2, and the results were analyzed using content validity, structural validity, internal consistency, inter- rater agreement, and test-retest reliability. RESULTS: The correlation coefficients of semantic fluency, phonemic fluency, category switching, digit span forward, digit span backward, cube, verbal recall, similarities and Go No-Go subscores in the Chinese version of the CCAS scale A were 0.586-0.831 (P ≤ 0.05) with the total score, but there was no significant correlation between the affect and the total score (P = 0.110). The total cognitive score of the Chinese version of the CCAS scale A was correlated with the (r = 0.807, P ≤ 0.01), and the total score of the Chinese version of the CCAS scale A affect was correlated with the total score of PHQ2 (r = 0.884, P ≤ 0.01). The 2 factors were extracted using principal component analysis, and the cumulative variance contribution rate was 59.633%. The factor loadings of each of the corresponding factors were > 0.5, indicating good structural validity of the Chinese version of the CCAS scale A. Cronbach α = 0.827 indicated good internal consistency, and inter-rater reliability (ICC > 0.95) and test-retest reliability (ICC = 0.717-0.895)indicated that the Chinese version of the CCAS scale A had good inter-rater reliability and test-retest reliability. CONCLUSION: The Chinese version of the CCAS scale A has good reliability and validity in the cerebellar injury population and is useful for screening cerebellar cognitive-emotional syndrome.

5.
Angew Chem Int Ed Engl ; : e202409796, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958031

RESUMO

Out-of-plane polarization is a highly desired property of two-dimensional (2D) ferroelectrics for application in vertical sandwich-type photoferroelectric devices, especially in ultrathin ferroelectronic devices. Nevertheless, despite great advances that have been made in recent years, out-of-plane polarization remains unrealized in the 2D hybrid double perovskite ferroelectric family. Here, from our previous work 2D hybrid double perovskite HQERN ((S3HQ)4EuRb(NO3)8, S3HQ = S-3-hydroxylquinuclidinium), we designed a molecular strategy of F-substitution on organic component to successfully obtain FQERN ((S3FQ)4EuRb(NO3)8, S3FQ = S-3-fluoroquinuclidinium) showing circularly polarized luminescence (CPL) response. Remarkably, compared to the monopolar axis ferroelectric HQERN, FQERN not only shows multiferroicity with the coexistence of multipolar axis ferroelectricity and ferroelasticity but also realizes out-of-plane ferroelectric polarization and a dramatic enhancement of Curie temperature of 94 K. This is mainly due to the introduction of F-substituted organic cations, which leads to a change in orientation and a reduction in crystal lattice void occupancy. Our study demonstrates that F-substitution is an efficient strategy to realize and optimize ferroelectric functional characteristics, giving more possibility of 2D ferroelectric materials for applications in micro-nano optoelectronic devices.

6.
Front Microbiol ; 15: 1385860, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962142

RESUMO

Colibacillosis caused by Avian pathogenic Escherichia coli (APEC), including peritonitis, respiratory tract inflammation and ovaritis, is recognized as one of the most common and economically destructive bacterial diseases in poultry worldwide. In this study, the characteristics and inhibitory potential of phages were investigated by double-layer plate method, transmission electron microscopy, whole genome sequencing, bioinformatics analysis and animal experiments. The results showed that phages C-3 and G21-7 isolated from sewage around goose farms infected multiple O serogroups (O1, O2, O18, O78, O157, O26, O145, O178, O103 and O104) Escherichia coli (E.coli) with a multiplicity of infection (MOI) of 10 and 1, respectively. According to the one-step growth curve, the incubation time of both bacteriophage C-3 and G21-7 was 10 min. Sensitivity tests confirmed that C-3 and G21-6 are stable at 4 to 50 °C and pH in the range of 4 to 11. Based on morphological and phylogenetic analysis, phages C-3 and G21-7 belong to Enterococcus faecalis (E. faecalis) phage species of the genus Saphexavirus of Herelleviridae family. According to genomic analysis, phage C-3 and G21-7 were 58,097 bp and 57,339 bp in size, respectively, with G+C content of 39.91% and 39.99%, encoding proteins of 97 CDS (105 to 3,993 bp) and 96 CDS (105 to 3,993 bp), and both contained 2 tRNAs. Both phages contained two tail proteins and holin-endolysin system coding genes, and neither carried resistance genes nor virulence factors. Phage mixture has a good safety profile and has shown good survival probability and feed efficiency in both treatment and prophylaxis experiments with one-day-old goslings. These results suggest that phage C-3 and G21-7 can be used as potential antimicrobials for the prevention and treatment of APEC.

7.
J Trace Elem Med Biol ; 85: 127492, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38964025

RESUMO

Low levels of the indispensable trace element selenium (Se) can cause oxidative stress and disrupt environmental homeostasis in humans and animals. Selenoprotein S (Selenos), of which Se is a key component, is a member of the selenoprotein family involved in various biological processes. This study aimed to investigate whether low-level SELENOS gene expression can induce oxidative stress and decrease the antioxidative capacity of chondrocytes. Compared with control cells, SELENOS-knockdown ATDC5 cells showed substantially higher dihydroethidium, reactive oxygen species and malondialdehyde levels, and lower superoxide dismutase (SOD) expression. Knockout of the gene in C57BL/6 mice increased the 8-hydroxy-2-deoxyguanosine level considerably and decreased SOD expression in cartilages relative to the levels in wild-type mice. The results showed that the increased nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling mediated by low-level SELENOS expression was involved in oxidative damage. The proliferative zone of the cartilage growth plate of SELENOS-knockout mice was shortened, suggesting cartilage differentiation dysfunction. In conclusion, this study confirmed that low-level Selenos expression plays a role in oxidative stress in cartilages.

8.
Phytomedicine ; 132: 155816, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38964158

RESUMO

BACKGROUND: The development of gut-liver axis metabolic immune crosstalk is intimately associated with intestinal barrier disorder, intestinal SCFAs-Th17/Treg immunological imbalance, and disorders of the gut microbiota. Prior research has discovered that Dendrobium officinale National Herbal Drink (NHD), a traditional Chinese medicine drink with enhanced immunity, may enhance the immunological response in animals with impaired immune systems brought on by cyclophosphamide by repairing intestinal barrier function and controlling turbulence in the gut microbiota. However, whether NHD can further improve the gut-liver axis metabolic immune crosstalk and its related mechanisms need to be systematically studied. OBJECTIVES: The purpose of this study is to clarify the function and mechanism of NHD in enhancing the gut-liver axis metabolic immunological crosstalk brought on by excessive alcohol intake. METHODS: In this work, we set up a mouse model to analyze the metabolic and immunological crosstalk involving the gut-liver axis across 7 weeks of continuous, excessive drinking. At the same time, high and low doses (20,10 ml/kg) of NHD were given by gavage. The effect of NHD on improving the metabolism of gut-liver axis was evaluated by blood lipid, liver lipid deposition, liver function and intestinal pathophysiology. By measuring serum immunological indices, intestinal barrier, and intestinal immune barrier, the impact of NHD on enhancing immune and intestinal barrier function was assessed. Furthermore, immunohistochemistry, immunofluorescence, 16S rRNA, Western blot, q-PCR and other methods were used to detect gut microbiota, SCFAs-GPR41/43 pathway, intestinal Th17/Treg immune cells and PPAR-α-NPC1L1/SREBP1 pathway to elucidate the mechanism by which NHD enhances the gut-liver axis' metabolic immune crosstalk. RESULTS: Our study demonstrated that NHD has the potential to improve the pathophysiological damage caused by gut-liver axis in model mice. NHD also ameliorated the disorder of lipid metabolism. In addition, it regulated the levels of peripheral blood T cell immunity and serum immune factors. And NHD can restore intestinal mechanical and immune barrier damage. NHD has a favorable impact on the quantity of beneficial bacteria, including uncultured_bacterium_g__norank_f__muribaculacea and uncultured_bacterium_g__Turicibacter. Additionally, it raised the model mice's levels of SCFAs (n-butyric acid, isovaleric acid, etc.). This resulted in the promotion of intestinal GPR41/43-ERK1/2 expression and the reshaping of intestinal CD4+T cell Th17/Treg homeostasis. As a consequence, colon IL-22 and IL-10 levels increased, while colon IL-17A levels decreased. Lastly, NHD raised the amount of intestinal IAP/LPS, regulated the development of PPAR-α-NPC1L1/SREBP1 pathway in gut-liver axis, and improve lipid metabolism disorder. CONCLUSIONS: Our study found that NHD can improve the gut-liver axis metabolic immune crosstalk in model mice caused by excessive drinking. The mechanism might be connected to how NHD controls gut microbiota disorders in model mice, the activation of intestinal SCFAs-GPR41/43 pathway, the remodeling of Th17/Treg immune homeostasis of intestinal CD4+T cells, the improvement of IAP/LPS abnormality, and further mediating the PPAR-α-NPC1L1/SREBP1 pathway of lipid metabolism in gut-liver axis.

9.
J Environ Manage ; 366: 121621, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972188

RESUMO

Reclaimed water irrigation has emerged as a critical alternative in agricultural regions facing water scarcity. However, soil pollution with microplastics (MPs) greatly increases the exposure risk and toxic effects of reclaimed water contaminations, such as phthalate esters (PAEs). A field experiment consisting of soil column pots evaluated the feasibility of using PAEs-contaminated water to irrigate oats (Avena sativa L.) in drought seasons. Three irrigation regimens based on soil matric potential thresholds (-10 kPa, -30 kPa, -50 kPa) explored the impact of PAE-contaminated water on oat physiology and environmental pollution in soil with and without MPs contamination. The results showed that treating oats at the SMP of -30 kPa boosted shoot biomass by 3.1%-14.0% compared to the drought condition at -50 kPa, and the root biomass of oats was significantly increased. The physiological metrics of oats indicated that irrigation at -50 kPa induced drought stress and oxidative damage in oats, particularly during the milk stage. Different irrigation treatments influenced the accumulation of PAEs in plants, soil, and leachate. The ratios of leachate to irrigation water in -10 kPa treatment with and without MPs addition were 1.18% and 4.48%, respectively, which aggravated the accumulation of pollutants in deep soil layers and may cause groundwater pollution. MPs pollution in soil increased the content of PAEs in the harvested oats and reduced the transport and accumulation of PAEs in deep soil layers (20-50 cm) and leachate. The coupling of PAEs in irrigation water with soil MPs pollution may exacerbate plant damage. However, the damage can be minimized under the scheduled irrigation at -30 kPa which could balance crop yield and potential risks.

10.
J Hazard Mater ; 476: 135103, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38972203

RESUMO

An earlier study found that respiratory cadmium chloride (CdCl2) exposure caused COPD-like lung injury. This study aimed to explore whether mitochondrial dysfunction-mediated alveolar epithelial senescence is involved in CdCl2-induced COPD-like lung injury. Adult C57BL/6 mice were exposed to CdCl2 (10 mg/L) aerosol for six months. Beta-galactosidase-positive cells, p21 and p16 were increased in CdCl2-exposed mouse lungs. The in vitro experiments showed that γ-H2AX was elevated in CdCl2-exposed alveolar epithelial cells. The cGAS-STING pathway was activated in CdCl2-exposed alveolar epithelial cells and mouse lungs. Cxcl1, Cxcl9, Il-10, Il-1ß and Mmp2, several senescence-associated secretory phenotypes (SASP), were upregulated in CdCl2-exposed alveolar epithelial cells. Mechanistically, CdCl2 exposure caused SIRT3 reduction and mitochondrial dysfunction in mouse lungs and alveolar epithelial cells. The in vitro experiment found that Sirt3 overexpression attenuated CdCl2-induced alveolar epithelial senescence and SASP. The in vivo experiments showed that Sirt3 gene knockout exacerbated CdCl2-induced alveolar epithelial senescence, alveolar structure damage, airway inflammation and pulmonary function decline. NMN, an NAD+ precursor, attenuated CdCl2-induced alveolar epithelial senescence and SASP in mouse lungs. Moreover, NMN supplementation prevented CdCl2-induced COPD-like alveolar structure damage, epithelial-mesenchymal transition and pulmonary function decline. These results suggest that mitochondrial dysfunction-associated alveolar epithelial senescence is involved in CdCl2-induced COPD-like lung injury.

11.
Adv Sci (Weinh) ; : e2403358, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973351

RESUMO

Conductive polymer hydrogels exhibit unique electrical, electrochemical, and mechanical properties, making them highly competitive electrode materials for stretchable high-capacity energy storage devices for cutting-edge wearable electronics. However, it remains extremely challenging to simultaneously achieve large mechanical stretchability, high electrical conductivity, and excellent electrochemical properties in conductive polymer hydrogels because introducing soft insulating networks for improving stretchability inevitably deteriorates the connectivity of rigid conductive domain and decreases the conductivity and electrochemical activity. This work proposes a distinct confinement self-assembly and multiple crosslinking strategy to develop a new type of organic-inorganic hybrid conductive hydrogels with biphase interpenetrating cross-linked networks. The hydrogels simultaneously exhibit high conductivity (2000 S m-1), large stretchability (200%), and high electrochemical activity, outperforming existing conductive hydrogels. The inherent mechanisms for the unparalleled comprehensive performances are thoroughly investigated. Elastic all-hydrogel supercapacitors are prepared based on the hydrogels, showing high specific capacitance (212.5 mF cm-2), excellent energy density (18.89 µWh cm-2), and large deformability. Moreover, flexible self-powered luminescent integrated systems are constructed based on the supercapacitors, which can spontaneously shine anytime and anywhere without extra power. This work provides new insights and feasible avenues for developing high-performance stretchable electrode materials and energy storage devices for wearable electronics.

12.
Int Immunopharmacol ; 138: 112573, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971108

RESUMO

BACKGROUND: Tianhe Zhuifeng Gao (TZG) is an authorized Chinese patent drug with satisfying clinical efficacy, especially for RA patients with cold-dampness syndrome. However, its underlying pharmacological mechanisms remain unclear. METHOD: Anti-arthritic effects of TZG were evaluated using an adjuvant-induced arthritis (AIA) rat model. Transcriptional regulatory network analysis based on synovial tissues obtained from AIA rats, combining with our previous analysis based on whole blood samples from RA patients with cold-dampness syndrome and co-immunoprecipitation were performed to identify involved dominant pathways, which were experimentally verified using AIA-wind-cold-dampness stimulation modified (AIA-M) animal model. RESULTS: TZG treatment dramatically attenuated joint injury and inflammatory response in AIA rats, and PSMC2-RUNX2-COL1A1 axis, which was closely associated with bone/cartilage damage, was inferred to be one of therapeutic targets of TZG against RA. Experimentally, TZG displayed obvious pharmacological effects for alleviating the joint inflammation and destruction through reinstating the body weight, reducing the arthritis score, the limbs diameters, the levels of RF and CRP, and the inflammatory cytokines, recovering the thymus and spleen indexes, diminishing bone and cartilage destruction, as well elevating the pain thresholds of AIA-M rats. In addition, TZG markedly reversed the abnormal energy metabolism in AIA-M rats through enhancing articular temperature, daily water consumption, and regulating expression levels of energy metabolism parameters and hormones. Moreover, TZG also significantly modulated the abnormal expression levels of PSMC2, RUNX2 and COL1A1 proteins in the ankle tissues of AIA-M rats. CONCLUSION: TZG may exert the bone protective effects in RA therapy via regulating bone and cartilage damage-associated PSMC2-RUNX2-COL1A1 axis.

13.
Blood ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968151

RESUMO

We report on the antileukemic activity of homoharringtonine (HHT) in T-ALL. We showed that HHT inhibited NOTCH/MYC pathway and induced a significantly longer survival in T-ALL mouse and patient-derived xenograft models, therefore supporting HHT as a promising agent for T-ALL.

14.
Nat Commun ; 15(1): 5616, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965253

RESUMO

Patterns on polymers usually have different mechanical properties as those of the substrates, causing deformation or distortion and even detachment of the patterns from the polymer substrates. Herein, we present a wrinkling strategy, which utilizes photolithography to define the area of stress distribution by light-induced physical crosslinking of polymers and controls diffusion of residual solvent to redistribute the stress and then offers the same material for patterns as substrate by thermal polymerization, providing uniform wrinkles without worrying about force relaxation. The strategy allows the recording and hiding of up to eight switchable images in one place that can be read by the naked eye without crosstalk, applying the wrinkled polymer for optical anti-counterfeiting. The wrinkled polyimide film was also utilized to act as a substrate for the creation of fine copper circuit by a full-additive process. It generates flexible integrated circuit (IC) carrier board with copper wire density of 400% higher than that of the state-of-the-art in industry while fulfilling the standards for industrialization.

15.
Front Psychiatry ; 15: 1377268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957736

RESUMO

Background: The present study aimed to investigate the drug-drug interaction and initial dosage optimization of aripiprazole in patients with schizophrenia based on population pharmacokinetics. Research design and methods: A total of 119 patients with schizophrenia treated with aripiprazole were included to build an aripiprazole population pharmacokinetic model using nonlinear mixed effects. Results: The weight and concomitant medication of fluoxetine influenced aripiprazole clearance. Under the same weight, the aripiprazole clearance rates were 0.714:1 in patients with or without fluoxetine, respectively. In addition, without fluoxetine, for the once-daily aripiprazole regimen, dosages of 0.3 and 0.2 mg kg-1 day-1 were recommended for patients with schizophrenia weighing 40-95 and 95-120 kg, respectively, while for the twice-daily aripiprazole regimen, 0.3 mg kg-1 day-1 was recommended for those weighing 40-120 kg. With fluoxetine, for the once-daily aripiprazole regimen, a dosage of 0.2 mg kg-1 day-1 was recommended for patients with schizophrenia weighing 40-120 kg, while for the twice-daily aripiprazole regimen, 0.3 and 0.2 mg kg-1 day-1 were recommended for those weighing 40-60 and 60-120 kg, respectively. Conclusion: This is the first investigation of the effects of fluoxetine on aripiprazole via drug-drug interaction. The optimal aripiprazole initial dosage is recommended in patients with schizophrenia.

16.
J Med Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959216

RESUMO

The P2Y14 receptor has been proven to be a potential target for IBD. Herein, we designed and synthesized a series of 4-amide-thiophene-2-carboxyl derivatives as novel potent P2Y14 receptor antagonists based on the scaffold hopping strategy. The optimized compound 39 (5-((5-fluoropyridin-2-yl)oxy)-4-(4-methylbenzamido)thiophene-2-carboxylic acid) exhibited subnanomolar antagonistic activity (IC50: 0.40 nM). Moreover, compound 39 demonstrated notably improved solubility, liver microsomal stability, and oral bioavailability. Fluorescent ligand binding assay confirmed that 39 has the binding ability to the P2Y14 receptor, and molecular dynamics (MD) simulations revealed the formation of a unique intramolecular hydrogen bond (IMHB) in the binding conformation. In the experimental colitis mouse model, compound 39 showed a remarkable anti-IBD effect even at low doses. Compound 39, with a potent anti-IBD effect and favorable druggability, can be a promising candidate for further research. In addition, this work lays a strong foundation for the development of P2Y14 receptor antagonists and the therapeutic strategy for IBD.

17.
J Colloid Interface Sci ; 674: 925-937, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38959738

RESUMO

Proton exchange membranes with high ionic conductivity and good chemical stability are critical for achieving high power density and long lifespan of direct methanol cells (DMFCs). Herein, a zwitterionic molecule was grafted onto the surface of polyvinylidene fluoride (PVDF) nanofibers to obtain functionalized PVDF porous substrate (SBMA-PDA@PVDF). Then, sulfonated poly(ether ether ketone) (SPEEK) was filled into the pores of SBMA-PDA@PVDF, and further ionic cross-linked via H2SO4 to prepare the composite membrane (SBMA-PDA@PVDF/SPEEK). The basic groups on the zwitterionic interface could not only establish ionic cross-linking with SPEEK to increase chemical stability and reduce swelling, but also serve as the adsorption sites for subsequent H2SO4 cross-linking to significantly enhance proton conductivity. Super-high proton conductivity (165.34 mS cm-1, 80 °C) was achieved for the membrane, which was 2.12 times higher than that of the pure SPEEK. Moreover, the SBMA-PDA@PVDF/SPEEK membrane exhibited remarkably improved oxidative stability of 91.6 % mass retention after soaking in Fenton's agent for 12 h, while pure SPEEK completely decomposed. Satisfactorily, the DMFC assembled with SBMA-PDA@PVDF/SPEEK exhibited a peak power density of 99.01 mW cm-2, which was twice as much as that of commercial Nafion 212 (48.88 mW cm-2). After 235 h durability test, only 11 % voltage loss was observed.

18.
Food Chem ; 458: 140231, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38959803

RESUMO

Aflatoxin B1 (AFB1), a pernicious constituent of the aflatoxin family, predominantly contaminates cereals, oils, and their derivatives. Acknowledged as a Class I carcinogen by the World Health Organization (WHO), the expeditious and quantitative discernment of AFB1 remains imperative. This investigation delineates that aluminum ions can precipitate the coalescence of iodine-modified silver nanoparticles, thereby engendering hot spots conducive for label-free AFB1 identification via Surface-Enhanced Raman Spectroscopy (SERS). This methodology manifests a remarkable limit of detection (LOD) at 0.47 fg/mL, surpassing the sensitivity thresholds of conventional survey techniques. Moreover, this method has good anti-interference ability, with a relative error of less than 10% and a relative standard deviation of less than 6% in quantitative results. Collectively, these findings illuminate the substantial application potential and viability of this approach in the quantitative analysis of AFB1, underpinning a significant advancement in food safety diagnostics.

19.
Int J Biometeorol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963429

RESUMO

Understanding the impact of climate warming on crop yield and its associated mechanisms is paramount for ensuring food security. Here, we conduct a thorough analysis of the impact of vapor pressure deficit (VPD) on maize yield, leveraging a rich dataset comprising temporal and spatial observations spanning 40 years across 31 maize-growing locations in Northeast and North China. Our investigation extends to the influencing meteorological factors that drive changes in VPD during the maize growing phase. Regression analysis reveals a linear negative relationship between VPD and maize yield, demonstrating diverse spatiotemporal characteristics. Spatially, maize yield exhibits higher sensitivity to VPD in Northeast China (NEC), despite the higher VPD levels in North China Plain (NCP). The opposite patterns reveal that high VPD not invariably lead to detrimental yield impacts. Temporal analysis sheds light on an upward trend in VPD, with values of 0.05 and 0.02 kPa/10yr, accompanied by significant abrupt changes around 1996 in NEC and 2006 in NCP, respectively. These temporal shifts contribute to the heightened sensitivity of maize yield in both regions. Importantly, we emphasize the need to pay closer attention to the substantial the impact of actual vapor pressure on abrupt VPD changes during the maize growing phase, particularly in the context of ongoing climate warming.

20.
Nat Hum Behav ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987357

RESUMO

Recent expansion of proteomic coverage opens unparalleled avenues to unveil new biomarkers of Alzheimer's disease (AD). Among 6,361 cerebrospinal fluid (CSF) proteins analysed from the ADNI database, YWHAG performed best in diagnosing both biologically (AUC = 0.969) and clinically (AUC = 0.857) defined AD. Four- (YWHAG, SMOC1, PIGR and TMOD2) and five- (ACHE, YWHAG, PCSK1, MMP10 and IRF1) protein panels greatly improved the accuracy to 0.987 and 0.975, respectively. Their superior performance was validated in an independent external cohort and in discriminating autopsy-confirmed AD versus non-AD, rivalling even canonical CSF ATN biomarkers. Moreover, they effectively predicted the clinical progression to AD dementia and were strongly associated with AD core biomarkers and cognitive decline. Synaptic, neurogenic and infectious pathways were enriched in distinct AD stages. Mendelian randomization did not support the significant genetic link between CSF proteins and AD. Our findings revealed promising high-performance biomarkers for AD diagnosis and prediction, with implications for clinical trials targeting different pathomechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...