Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979204

RESUMO

Type I interferons (IFN-I) are cytokines with potent antiviral and inflammatory capacities. IFN-I signaling drives the expression of hundreds of IFN-I stimulated genes (ISGs), whose aggregate function results in the control of viral infection. A few of these ISGs are tasked with negatively regulating the IFN-I response to prevent overt inflammation. ISG15 is a negative regulator whose absence leads to persistent, low-grade elevation of ISG expression and concurrent, self-resolving mild autoinflammation. The limited breadth and low-grade persistence of ISGs expressed in ISG15 deficiency are sufficient to confer broad-spectrum antiviral resistance. Inspired by ISG15 deficiency, we have identified a nominal collection of 10 ISGs that recapitulate the broad antiviral potential of the IFN-I system. The expression of the 10 ISG collection in an IFN-I non-responsive cell line increased cellular resistance to Zika, Vesicular Stomatitis, Influenza A (IAV), and SARS-CoV-2 viruses. A deliverable prophylactic formulation of this syndicate of 10 ISGs significantly inhibited IAV PR8 replication in vivo in mice and protected hamsters against a lethal SARS-CoV-2 challenge, suggesting its potential as a broad-spectrum antiviral against many current and future emerging viral pathogens. One-Sentence Summary: Human inborn error of immunity-guided discovery and development of a broad-spectrum RNA antiviral therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...