Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Chemosphere ; 361: 142527, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838866

RESUMO

Peri-urban environments are significant reservoirs of wastewater, and releasing this untreated wastewater from these resources poses severe environmental and ecological threats. Wastewater mitigation through sustainable approaches is an emerging area of interest. Algae offers a promising strategy for carbon-neutral valorization and recycling of urban wastewater. Aiming to provide a proof-of-concept for complete valorization and recycling of urban wastewater in a peri-urban environment in a closed loop system, a newly isolated biocrust-forming cyanobacterium Desertifilum tharense BERC-3 was evaluated. Here, the highest growth and lipids productivity were achieved in urban wastewater compared to BG11 and synthetic wastewater. D. tharense BERC-3 showed 60-95% resource recovery efficiency and decreased total dissolved solids, chemical oxygen demand, biological oxygen demand, nitrate nitrogen, ammonia nitrogen and total phosphorus contents of the water by 60.37%, 81.11%, 82.75%, 87.91%, 85.13%, 85.41%, 95.87%, respectively, making it fit for agriculture as per WHO's safety limits. Soil supplementation with 2% wastewater-cultivated algae as a soil amender, along with its irrigation with post-treated wastewater, improved the nitrogen content and microbial activity of the soil by 0.3-2.0-fold and 0.5-fold, respectively. Besides, the availability of phosphorus was also improved by 1.66-fold. The complete bioprocessing pipeline offered a complete biomass utilization. This study demonstrated the first proof-of-concept of integrating resource recovery and resource recycling using cyanobacteria to develop a peri-urban algae farming system. This can lead to establishing wastewater-driven algae cultivation systems as novel enterprises for rural migrants moving to urban areas.


Assuntos
Cianobactérias , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Cianobactérias/crescimento & desenvolvimento , Nitrogênio/análise , Reciclagem , Agricultura/métodos , Análise da Demanda Biológica de Oxigênio , Solo/química
3.
Biomed Pharmacother ; 176: 116806, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796971

RESUMO

Central nervous system (CNS) damage is usually irreversible owing to the limited regenerative capability of neurons. Following CNS injury, astrocytes are reactively activated and are the key cells involved in post-injury repair mechanisms. Consequently, research on the reprogramming of reactive astrocytes into neurons could provide new directions for the restoration of neural function after CNS injury and in the promotion of recovery in various neurodegenerative diseases. This review aims to provide an overview of the means through which reactive astrocytes around lesions can be reprogrammed into neurons, to elucidate the intrinsic connection between the two cell types from a neurogenesis perspective, and to summarize what is known about the neurotranscription factors, small-molecule compounds and MicroRNA that play major roles in astrocyte reprogramming. As the malignant proliferation of astrocytes promotes the development of glioblastoma multiforme (GBM), this review also examines the research advances on and the theoretical basis for the reprogramming of GBM cells into neurons and discusses the advantages of such approaches over traditional treatment modalities. This comprehensive review provides new insights into the field of GBM therapy and theoretical insights into the mechanisms of neurological recovery following neurological injury and in GBM treatment.


Assuntos
Astrócitos , Neoplasias Encefálicas , Reprogramação Celular , Glioblastoma , Neurônios , Humanos , Astrócitos/metabolismo , Astrócitos/patologia , Glioblastoma/patologia , Neurônios/metabolismo , Neurônios/patologia , Animais , Neoplasias Encefálicas/patologia , Neurogênese , Sistema Nervoso Central/patologia
4.
Ageing Res Rev ; 98: 102324, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38762100

RESUMO

Progressive neuronal dysfunction and death are key features of neurodegenerative diseases; therefore, promoting neurogenesis in neurodegenerative diseases is crucial. With advancements in proteomics and high-throughput sequencing technology, it has been demonstrated that histone post-transcriptional modifications (PTMs) are often altered during neurogenesis when the brain is affected by disease or external stimuli and that the degree of histone modification is closely associated with the development of neurodegenerative diseases. This review aimed to show the regulatory role of histone modifications in neurogenesis and neurodegenerative diseases by discussing the changing patterns and functional significance of histone modifications, including histone methylation, acetylation, ubiquitination, phosphorylation, and lactylation. Finally, we explored the control of neurogenesis and the development of neurodegenerative diseases by artificially modulating histone modifications.


Assuntos
Histonas , Doenças Neurodegenerativas , Neurogênese , Processamento de Proteína Pós-Traducional , Neurogênese/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/genética , Humanos , Histonas/metabolismo , Animais , Código das Histonas
5.
JCI Insight ; 9(13)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771644

RESUMO

Hypotrichosis is a genetic disorder characterized by a diffuse and progressive loss of scalp and/or body hair. Nonetheless, the causative genes for several affected individuals remain elusive, and the underlying mechanisms have yet to be fully elucidated. Here, we discovered a dominant variant in a disintegrin and a metalloproteinase domain 17 (ADAM17) gene caused hypotrichosis with woolly hair. Adam17 (p.D647N) knockin mice mimicked the hair abnormality in patients. ADAM17 (p.D647N) mutation led to hair follicle stem cell (HFSC) exhaustion and caused abnormal hair follicles, ultimately resulting in alopecia. Mechanistic studies revealed that ADAM17 binds directly to E3 ubiquitin ligase tripartite motif-containing protein 47 (TRIM47). ADAM17 variant enhanced the association between ADAM17 and TRIM47, leading to an increase in ubiquitination and subsequent degradation of ADAM17 protein. Furthermore, reduced ADAM17 protein expression affected the Notch signaling pathway, impairing the activation, proliferation, and differentiation of HFSCs during hair follicle regeneration. Overexpression of Notch intracellular domain rescued the reduced proliferation ability caused by Adam17 variant in primary fibroblast cells.


Assuntos
Proteína ADAM17 , Alopecia , Folículo Piloso , Ubiquitina-Proteína Ligases , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Animais , Alopecia/genética , Alopecia/metabolismo , Alopecia/patologia , Camundongos , Folículo Piloso/metabolismo , Folículo Piloso/patologia , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Masculino , Transdução de Sinais/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Feminino , Mutação , Técnicas de Introdução de Genes , Proliferação de Células/genética , Diferenciação Celular/genética , Proteólise , Modelos Animais de Doenças , Fibroblastos/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética
6.
Anal Chem ; 96(21): 8613-8621, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38706229

RESUMO

The synthesis of 12α-hydroxylated bile acids (12HBAs) and non-12α-hydroxylated bile acids (non-12HBAs) occurs via classical and alternative pathways, respectively. The composition of these BAs is a crucial index for pathophysiologic assessment. However, accurately differentiating 12HBAs and non-12HBAs is highly challenging due to the limited standard substances. Here, we innovatively introduce 12α-hydroxysteroid dehydrogenase (12α-HSDH) as an enzymatic probe synthesized by heterologous expression in Escherichia coli, which can specifically and efficiently convert 12HBAs in vitro under mild conditions. Coupled to the conversion rate determined by liquid chromatography-high resolution mass spectrometry (LC-HRMS), this enzymatic probe allows for the straightforward distinguishing of 210 12HBAs and 312 non-12HBAs from complex biological matrices, resulting in a BAs profile with a well-defined hydroxyl feature at the C12 site. Notably, this enzyme-driven LC-HRMS approach can be extended to any molecule with explicit knowledge of enzymatic transformation. We demonstrate the practicality of this BAs profile in terms of both revealing cross-species BAs heterogeneity and monitoring the alterations of 12HBAs and non-12HBAs under asthma disease. We envisage that this work will provide a novel pattern to recognize the shift of BA metabolism from classical to alternative synthesis pathways in different pathophysiological states, thereby offering valuable insights into the management of related diseases.


Assuntos
Ácidos e Sais Biliares , Espectrometria de Massas , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/análise , Cromatografia Líquida , Animais , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Humanos , Camundongos
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167207, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701954

RESUMO

PURPOSE: In this study, we identified and diagnosed a novel inherited condition called Dyschromatosis, Ichthyosis, Deafness, and Atopic Disease (DIDA) syndrome. We present a series of studies to clarify the pathogenic variants and specific mechanism. METHODS: Exome sequencing and Sanger sequencing was conducted in affected and unaffected family members. A variety of human and cell studies were performed to explore the pathogenic process of keratosis. RESULTS: Our finding indicated that DIDA syndrome was caused by compound heterozygous variants in the oxysterol-binding protein-related protein 2 (OSBPL2) gene. Furthermore, our findings revealed a direct interaction between OSBPL2 and Phosphoinositide phospholipase C-beta-3 (PLCB3), a key player in hyperkeratosis. OSBPL2 effectively inhibits the ubiquitylation of PLCB3, thereby stabilizing PLCB3. Conversely, OSBPL2 variants lead to enhanced ubiquitination and subsequent degradation of PLCB3, leading to epidermal hyperkeratosis, characterized by aberrant proliferation and delayed terminal differentiation of keratinocytes. CONCLUSIONS: Our study not only unveiled the association between OSBPL2 variants and the newly identified DIDA syndrome but also shed light on the underlying mechanism.


Assuntos
Surdez , Ictiose , Linhagem , Fosfolipase C beta , Humanos , Surdez/genética , Surdez/patologia , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Feminino , Masculino , Ictiose/genética , Ictiose/patologia , Ictiose/metabolismo , Heterozigoto , Ubiquitinação , Queratinócitos/metabolismo , Queratinócitos/patologia , Sequenciamento do Exoma , Adulto , Síndrome , Células HEK293 , Receptores de Esteroides
9.
Plants (Basel) ; 13(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732487

RESUMO

Establishing plant regeneration systems and efficient genetic transformation techniques plays a crucial role in plant functional genomics research and the development of new crop varieties. The inefficient methods of transformation and regeneration of recalcitrant species and the genetic dependence of the transformation process remain major obstacles. With the advancement of plant meristematic tissues and somatic embryogenesis research, several key regulatory genes, collectively known as developmental regulators, have been identified. In the field of plant genetic transformation, the application of developmental regulators has recently garnered significant interest. These regulators play important roles in plant growth and development, and when applied in plant genetic transformation, they can effectively enhance the induction and regeneration capabilities of plant meristematic tissues, thus providing important opportunities for improving genetic transformation efficiency. This review focuses on the introduction of several commonly used developmental regulators. By gaining an in-depth understanding of and applying these developmental regulators, it is possible to further enhance the efficiency and success rate of plant genetic transformation, providing strong support for plant breeding and genetic engineering research.

10.
J Control Release ; 370: 82-94, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643938

RESUMO

Delivering functional gene into targeted skin cells or tissues to modulate the genes expression, has the potential to treat various hereditary cutaneous disorders. Nevertheless, the lack of safe and effective gene delivery vehicles greatly limits the clinical translation of gene therapy for inherited skin diseases. Herein, we developed a facile elution fractionation strategy to isolate eight HPAEs with Mw ranging from 7.6 to 131.8 kg/mol and D < 2.0 from the one crude HPAE23.7k, and investigated the expression efficiency for TGM1 and COL7A1 plasmids. Gene transfection results revealed that the intermediate MW HPAEs, HPAE20.6k, exhibited the highest gene transfection efficiency (46.4%) and the strongest mean fluorescence intensity (143,032 RLU), compared to other isolated components and the crude product. Importantly, best-performing isolated HPAE effectively delivered COL7A1 (15,974 bp) and TGM1 (7181 bp) plasmids, promoting the efficient expression of type VII collagen (C7) and transglutaminase-1 proteins in cutaneous cells. Our study establishes a straightforward step-by-step elution fractionation strategy for the development of HPAEs gene delivery vectors, expediting their clinical translation in inherited skin diseases.


Assuntos
Colágeno Tipo VII , Pele , Transfecção , Transglutaminases , Transglutaminases/genética , Transglutaminases/metabolismo , Humanos , Transfecção/métodos , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Pele/metabolismo , Plasmídeos/genética , Fracionamento Químico/métodos , Expressão Gênica , Técnicas de Transferência de Genes , Queratinócitos/metabolismo
11.
Plants (Basel) ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592923

RESUMO

Melanosciadium is considered a monotypic genus and is also endemic to the southwest of China. No detailed phylogenetic studies or plastid genomes have been identified in Melanosciadium. In this study, the plastid genome sequence and nrDNA sequence were used for the phylogenetic analysis of Melanosciadium and its related groups. Angelica tsinlingensis was previously considered a synonym of Hansenia forbesii. Similarly, Ligusticum angelicifolium was previously thought to be the genus Angelica or Ligusticopsis. Through field observations and morphological evidence, we believe that the two species are more similar to M. pimpinelloideum in leaves, umbel rays, and fruits. Meanwhile, we found a new species from Anhui Province (eastern China) that is similar to M. pimpinelloideum and have named it M. Jinzhaiensis. We sequenced and assembled the complete plastid genomes of these species and another three Angelica species. The genome comparison results show that M. pimpinelloideum, A. tsinlingensis, Ligusticum angelicifolium, and M. jinzhaiensis have similarities to each other in the plastid genome size, gene number, and length of the LSC and IR regions; the plastid genomes of these species are distinct from those of the Angelica species. In addition, we reconstruct the phylogenetic relationships using both plastid genome sequences and nrDNA sequences. The phylogenetic analysis revealed that A. tsinlingensis, M. pimpinelloideum, L. angelicifolium, and M. jinzhaiensis are closely related to each other and form a monophyletic group with strong support within the Selineae clade. Consequently, A. tsinlingensis and L. angelicifolium should be classified as members of the genus Melanosciadium, and suitable taxonomical treatments have been proposed. Meanwhile, a comprehensive description of the new species, M. jinzhaiensis, is presented, encompassing its habitat environment and detailed morphological traits.

13.
J Orthop Surg Res ; 19(1): 264, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664852

RESUMO

OBJECTIVE: This study aimed to evaluate the influence of herniation of cartilaginous endplates on postoperative pain and functional recovery in patients undergoing percutaneous endoscopic lumbar discectomy (PELD) for lumbar disc herniation (LDH). METHODS: A retrospective analysis was conducted on 126 patients with LDH treated with PELD at the Third Hospital of Hebei Medical University from January 2021 to January 2022. Whether cartilaginous endplates had herniated was identified by analyzing these specific findings from MRI scans: posterior marginal nodes, posterior osteophytes, mid endplate irregularities, heterogeneous low signal intensity of extruded material, and Modic changes in posterior corners and mid endplates. Patients were assessed for postoperative pain using the Visual Analogue Scale (VAS) and functional recovery using the Oswestry Disability Index (ODI) and Modified MacNab criteria. Statistical analyses compared outcomes based on the presence of herniation of cartilaginous endplates. RESULTS: Patients with herniation of cartilaginous endplates experienced higher pain scores early postoperatively but showed significant improvement in pain and functional status over the long term. The back pain VAS scores showed significant differences between the groups with and without herniation of cartilaginous endplates on postoperative day 1 and 1 month (P < 0.05). Leg pain VAS scores showed significant differences on postoperative day 1 (P < 0.05). Modic changes were significantly associated with variations in postoperative recovery, highlighting their importance in predicting patient outcomes. In patients with herniation of cartilaginous endplates, there were statistically significant differences in the back pain VAS scores at 1 month postoperatively and the ODI functional scores on postoperative day 1 between the groups with and without Modic changes (P < 0.05). There were no significant differences in the surgical outcomes between patients with and without these conditions regarding the Modified MacNab criteria (P > 0.05). CONCLUSION: Herniation of cartilaginous endplates significantly affect early postoperative pain and functional recovery in LDH patients undergoing PELD. These findings emphasize the need for clinical consideration of these imaging features in the preoperative planning and postoperative management to enhance patient outcomes and satisfaction.


Assuntos
Discotomia Percutânea , Endoscopia , Deslocamento do Disco Intervertebral , Vértebras Lombares , Recuperação de Função Fisiológica , Humanos , Deslocamento do Disco Intervertebral/cirurgia , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Masculino , Feminino , Discotomia Percutânea/métodos , Estudos Retrospectivos , Vértebras Lombares/cirurgia , Vértebras Lombares/diagnóstico por imagem , Pessoa de Meia-Idade , Adulto , Endoscopia/métodos , Dor Pós-Operatória/etiologia , Resultado do Tratamento , Medição da Dor , Cartilagem/diagnóstico por imagem , Idoso , Imageamento por Ressonância Magnética
14.
Nature ; 628(8008): 639-647, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570691

RESUMO

Prime editing enables the precise modification of genomes through reverse transcription of template sequences appended to the 3' ends of CRISPR-Cas guide RNAs1. To identify cellular determinants of prime editing, we developed scalable prime editing reporters and performed genome-scale CRISPR-interference screens. From these screens, a single factor emerged as the strongest mediator of prime editing: the small RNA-binding exonuclease protection factor La. Further investigation revealed that La promotes prime editing across approaches (PE2, PE3, PE4 and PE5), edit types (substitutions, insertions and deletions), endogenous loci and cell types but has no consistent effect on genome-editing approaches that rely on standard, unextended guide RNAs. Previous work has shown that La binds polyuridine tracts at the 3' ends of RNA polymerase III transcripts2. We found that La functionally interacts with the 3' ends of polyuridylated prime editing guide RNAs (pegRNAs). Guided by these results, we developed a prime editor protein (PE7) fused to the RNA-binding, N-terminal domain of La. This editor improved prime editing with expressed pegRNAs and engineered pegRNAs (epegRNAs), as well as with synthetic pegRNAs optimized for La binding. Together, our results provide key insights into how prime editing components interact with the cellular environment and suggest general strategies for stabilizing exogenous small RNAs therein.


Assuntos
Edição de Genes , Proteínas de Ligação a RNA , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Células K562 , Poli U/genética , Poli U/metabolismo , RNA Polimerase III/metabolismo , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Proteínas de Ligação a RNA/metabolismo
16.
Plant Cell Rep ; 43(4): 93, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467927

RESUMO

KEY MESSAGE: VyPUB21 plays a key role during the defense against powdery mildew in grapes. Ubiquitin-ligating enzyme (E3), a type of protein widely found in plants, plays a key role in their resistance to disease. Yet how E3 participates in the disease-resistant response of Chinese wild grapevine (Vitis yeshanensis) remains unclear. Here we isolated and identified a U-box type E3 ubiquitin ligase, VyPUB21, from V. yeshanensis. This gene's expression level rose rapidly after induction by exogenous salicylic acid (SA), jasmonic acid (JA), and ethylene (ETH) and powdery mildew. In vitro ubiquitination assay results revealed VyPUB21 could produce ubiquitination bands after co-incubation with ubiquitin, ubiquitin-activating enzyme (E1), and ubiquitin-conjugating enzyme (E2); further, mutation of the conserved amino acid site in the U-box can inhibit the ubiquitination. Transgenic VyPUB21 Arabidopsis had low susceptibility to powdery mildew, and significantly fewer conidiophores and spores on its leaves. Expression levels of disease resistance-related genes were also augmented in transgenic Arabidopsis, and its SA concentration also significantly increased. VyPUB21 interacts with VyNIMIN and targets VyNIMIN protein hydrolysis through the 26S proteasome system. Thus, the repressive effect of the NIMIN-NPR complex on the late systemic acquired resistance (SAR) gene was attenuated, resulting in enhanced resistance to powdery mildew. These results indicate that VyPUB21 encoding ubiquitin ligase U-box E3 activates the SA signaling pathway, and VyPUB21 promotes the expression of late SAR gene by degrading the important protein VyNIMIN of SA signaling pathway, thus enhancing grape resistance to powdery mildew.


Assuntos
Arabidopsis , Ascomicetos , Vitis , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Vitis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ascomicetos/fisiologia , Ubiquitinas/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética
17.
Eur J Clin Pharmacol ; 80(6): 911-918, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441574

RESUMO

OBJECTIVE: To analyze the clinical characteristics, incidence, and distribution of drug-associated muscle adverse reactions (DAMAR) in real-world inpatients, to provide valuable references for clinical medication use. METHODS: We conducted an automatic retrospective monitoring of inpatients from May 1, 2022, to April 30, 2023, to collect information on adverse drug reactions (ADR) of patients and conducted subsequent analyses. RESULTS: Among 102,430 hospitalizations, 1106 cases of DAMARs were identified, yielding an incidence of 1.08%, including 125 cases of rhabdomyolysis at an incidence of 0.12%. Seventy-five percent of the patients experienced muscle adverse reactions within 5 days after taking medication, with a median elevated creatine kinase (CK) value of 420.4 IU/L. Risk factors of DAMAR include age ≥ 65, male sex, obesity, hypertension, hepatic and renal insufficiency, and anemia. No significant correlation was observed between the duration of surgery and CK elevation, while the surgical procedure itself had an impact. The 114 drugs associated were predominantly nervous system drugs, anti-infectives for systemic use, and cardiovascular system drugs, with levofloxacin, pregabalin, and parecoxib being the most frequently associated drugs. CONCLUSION: Healthcare professionals should be vigilant with patients exhibiting the identified risk factors. Monitoring creatine kinase and related indices when using myotoxic drugs is crucial to preventing serious adverse reactions, ultimately preserving patients' quality of life.


Assuntos
Creatina Quinase , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Pacientes Internados , Rabdomiólise , Humanos , Masculino , Feminino , Fatores de Risco , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Incidência , Adulto , Creatina Quinase/sangue , Rabdomiólise/induzido quimicamente , Rabdomiólise/epidemiologia , Pacientes Internados/estatística & dados numéricos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Adolescente , Idoso de 80 Anos ou mais , Adulto Jovem , Hospitalização/estatística & dados numéricos , Criança , Doenças Musculares/induzido quimicamente , Doenças Musculares/epidemiologia
18.
J Agric Food Chem ; 72(8): 3846-3871, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372640

RESUMO

Methylated natural products are widely spread in nature. S-Adenosyl-l-methionine (SAM) is the secondary abundant cofactor and the primary methyl donor, which confer natural products with structural and functional diversification. The increasing demand for SAM-dependent natural products (SdNPs) has motivated the development of microbial cell factories (MCFs) for sustainable and efficient SdNP production. Insufficient and unsustainable SAM availability hinders the improvement of SdNP MCF performance. From the perspective of developing MCF, this review summarized recent understanding of de novo SAM biosynthesis and its regulatory mechanism. SAM is just the methyl mediator but not the original methyl source. Effective and sustainable methyl source supply is critical for efficient SdNP production. We compared and discussed the innate and relatively less explored alternative methyl sources and identified the one involving cheap one-carbon compound as more promising. The SAM biosynthesis is synergistically regulated on multilevels and is tightly connected with ATP and NAD(P)H pools. We also covered the recent advancement of metabolic engineering in improving intracellular SAM availability and SdNP production. Dynamic regulation is a promising strategy to achieve accurate and dynamic fine-tuning of intracellular SAM pool size. Finally, we discussed the design and engineering constraints underlying construction of SAM-responsive genetic circuits and envisioned their future applications in developing SdNP MCFs.


Assuntos
Produtos Biológicos , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Engenharia Metabólica
19.
Cancer Biol Ther ; 25(1): 2306674, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372700

RESUMO

DIRAS family GTPase 1 (DIRAS1) has been reported as a potential tumor suppressor in other human cancer. However, its expression pattern and role in cervical cancer remain unknown. Knockdown of DIRAS1 significantly promoted the proliferation, growth, migration, and invasion of C33A and SiHa cells cultured in vitro. Overexpression of DIRAS1 significantly inhibited the viability and motility of C33A and SiHa cells. Compared with normal cervical tissues, DIRAS1 mRNA levels were significantly lower in cervical cancer tissues. DIRAS1 protein expression was also significantly reduced in cervical cancer tissues compared with para-cancerous tissues. In addition, DIRAS1 expression level in tumor tissues was significantly negatively correlated with the pathological grades of cervical cancer patients. DNA methylation inhibitor (5-Azacytidine) and histone deacetylation inhibitor (SAHA) resulted in a significant increase in DIRAS1 mRNA levels in C33A and SiHa cells, but did not affect DIRAS1 protein levels. FTO inhibitor (FB23-2) significantly down-regulated intracellular DIRAS1 mRNA levels, but significantly up-regulated DIRAS1 protein levels. Moreover, the down-regulation of METTL3 and METTL14 expression significantly inhibited DIRAS1 protein expression, whereas the down-regulation of FTO and ALKBH5 expression significantly increased DIRAS1 protein expression. In conclusion, DIRAS1 exerts a significant anti-oncogenic function and its expression is significantly downregulated in cervical cancer cells. The m6A modification may be a key mechanism to regulate DIRAS1 mRNA stability and protein translation efficiency in cervical cancer.


Assuntos
Adenina/análogos & derivados , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Azacitidina/farmacologia , RNA Mensageiro/genética , Metiltransferases , GTP Fosfo-Hidrolases , Proteínas Supressoras de Tumor , Dioxigenase FTO Dependente de alfa-Cetoglutarato
20.
Int J Clin Pharm ; 46(3): 684-693, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38416350

RESUMO

BACKGROUND: Automatic monitoring and assessment are increasingly employed in drug safety evaluations using hospital information system data. The increasing concern about granisetron-related arrhythmias requires real-world studies to improve our understanding of its safety. AIM: This study aimed to analyze the incidence, clinical characteristics, and risk factors of granisetron-related arrhythmias in hospitalized patients using real-world data obtained from the Adverse Drug Event Active Surveillance and Assessment System-II (ADE-ASAS-II) and concurrently aimed to develop and validate a nomogram to predict the occurrence of arrhythmias. METHOD: Retrospective automatic monitoring of inpatients using granisetron was conducted in a Chinese hospital from January 1, 2017, to December 31, 2021, to determine the incidence of arrhythmias using ADE-ASAS- II. Propensity score matching was used to balance confounders and analyze clinical characteristics. Based on risk factors identified through logistic regression analysis, a prediction nomogram was established and internally validated using the Bootstrap method. RESULTS: Arrhythmias occurred in 178 of 72,508 cases taking granisetron with an incidence of 0.3%. Independent risk factors for granisetron-related arrhythmias included medication duration, comorbid cardiovascular disease, concomitant use of other 5-hydroxytryptamine 3 receptor antagonists, alanine aminotransferase > 40 U/L, and blood urea nitrogen > 7.5 mmol/L. The nomogram demonstrated good differentiation and calibration, with enhanced clinical benefit observed when the risk threshold ranged from 0.10 to 0.82. CONCLUSION: The nomogram, based on the five identified independent risk factors, may be valuable in predicting the risk of granisetron-related arrhythmias in the administered population, offering significant clinical applications.


Assuntos
Arritmias Cardíacas , Granisetron , Nomogramas , Humanos , Granisetron/efeitos adversos , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/epidemiologia , Idoso , Estudos de Casos e Controles , Fatores de Risco , Incidência , Adulto , China/epidemiologia , Antieméticos/efeitos adversos , Sistemas de Notificação de Reações Adversas a Medicamentos/estatística & dados numéricos , Idoso de 80 Anos ou mais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...