Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(20): 29218-29231, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568313

RESUMO

The mobilization of internal phosphorus (P) plays a crucial role in transitioning nutrient limitations within lake ecosystems. While previous research has extensively examined P release in littoral zones influenced by fluctuating water levels, there is a paucity of studies addressing the implications of sustained water level rise in this context, particularly as it pertains to nutrient limitations in benthic algae. To address this gap, we conducted an integrated study in Qinghai Lake. In the field sampling and microcosm experiment, we found that P concentrations are elevated in areas subjected to short-term inundation compared to those enduring prolonged inundation, primarily due to the dissolution of sedimentary P fractions. The results of nutrient diffusing substrata (NDS) bioassays indicated that benthic algae in Qinghai Lake displayed either P limitation or NP co-limitation. The transition from P limitation to NP co-limitation suggested that internal P release may serve to ameliorate nutrient limitations in benthic algae. This phenomenon could potentially contribute to the proliferation of Cladophora in the littoral zones of Qinghai Lake, thereby posing long-term implications for the lake's aquatic ecosystem, particularly under conditions of sustained water level rise.


Assuntos
Ecossistema , Lagos , Fósforo , Solo , Fósforo/análise , Lagos/química , China , Solo/química , Nutrientes/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...