Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(8)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628672

RESUMO

World-wide, rice (Oryza sativa L.) is an important food source, and its production is often adversely affected by salinity. Therefore, to ensure stable rice yields for global food security, it is necessary to understand the salt tolerance mechanism of rice. The present study focused on the expression pattern of the rice mismatch repair gene post-meiotic segregation 1 (OsPMS1), studied the physiological properties and performed transcriptome analysis of ospms1 mutant seedlings in response to salt stress. Under normal conditions, the wild-type and ospms1 mutant seedlings showed no significant differences in growth and physiological indexes. However, after exposure to salt stress, compared with wild-type seedlings, the ospms1 mutant seedlings exhibited increased relative water content, relative chlorophyll content, superoxide dismutase (SOD) activity, K+ and abscisic acid (ABA) content, and decreased malondialdehyde (MDA) content, Na+ content, and Na+/K+ ratio, as well as decreased superoxide anion (O2-) and hydrogen peroxide (H2O2) accumulation. Gene ontology (GO) analysis of the differentially expressed genes (DEGs) of ospms1 mutant seedlings treated with 0 mM and 150 mM NaCl showed significant enrichment in biological and cytological processes, such as peroxidase activity and ribosomes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis showed that the DEGs specifically enriched ascorbate and aldarate metabolism, flavone and flavonol biosynthesis, and glutathione metabolism pathways. Further quantitative real-time reverse transcription-PCR (qRT-PCR) analysis revealed significant changes in the transcription levels of genes related to abscisic acid signaling (OsbZIP23, OsSAPK6, OsNCED4, OsbZIP66), reactive oxygen scavenging (OsTZF1, OsDHAR1, SIT1), ion transport (OsHAK5), and osmoregulation (OsLEA3-2). Thus, the study's findings suggest that the ospms1 mutant tolerates salt stress at the seedling stage by inhibiting the accumulation of reactive oxygen species, maintaining Na+ and K+ homeostasis, and promoting ABA biosynthesis.


Assuntos
Ácido Abscísico , Tolerância ao Sal , Tolerância ao Sal/genética , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Homeostase/genética , Íons
2.
Front Plant Sci ; 13: 1068769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531377

RESUMO

Cadmium is one of the most common heavy metal contaminants found in agricultural fields. MutSα, MutSß, and MutSγ are three different MutS-associated protein heterodimer complexes consisting of MSH2/MSH6, MSH2/MSH3, and MSH2/MSH7, respectively. These complexes have different mismatch recognition properties and abilities to support MMR. However, changes in mismatch repair genes (OsMSH2, OsMSH3, OsMSH6, and OsMSH7) of the MutS system in rice, one of the most important food crops, under cadmium stress and their association with E2Fs, the key transcription factors affecting cell cycles, are poorly evaluated. In this study, we systematically categorized six rice E2Fs and confirmed that OsMSHs were the downstream target genes of E2F using dual-luciferase reporter assays. In addition, we constructed four msh mutant rice varieties (msh2, msh3, msh6, and msh7) using the CRISPR-Cas9 technology, exposed these mutant rice seedlings to different concentrations of cadmium (0, 2, and 4 mg/L) and observed changes in their phenotype and transcriptomic profiles using RNA-Seq and qRT-PCR. We found that the difference in plant height before and after cadmium stress was more significant in mutant rice seedlings than in wild-type rice seedlings. Transcriptomic profiling and qRT-PCR quantification showed that cadmium stress specifically mobilized cell cycle-related genes ATR, CDKB2;1, MAD2, CycD5;2, CDKA;1, and OsRBR1. Furthermore, we expressed OsE2Fs in yeasts and found that heterologous E2F expression in yeast strains regulated cadmium tolerance by regulating MSHs expression. Further exploration of the underlying mechanisms revealed that cadmium stress may activate the CDKA/CYCD complex, which phosphorylates RBR proteins to release E2F, to regulate downstream MSHs expression and subsequent DNA damage repairment, thereby enhancing the response to cadmium stress.

3.
Gene ; 544(2): 191-7, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24768724

RESUMO

To study the assembly of phycocyanin ß subunit, the gene cpcT was first cloned from Arthrospira platensis FACHB314. To explore the function of cpcT, the DNA of phycocyanin ß subunit and cpcT were transformed into Escherichia coli BL21 with the plasmid pET-hox1-pcyA, which contained the genes hemeoxygenase 1 (Hox1) and ferredoxin oxidoreductase (PcyA) needed to produce phycocyanobilin. The transformed strains showed specific phycocyanin fluorescence, and the fluorescence intensity was stronger than the strains with only phycocyanin ß subunit, indicating that CpcT can promote the assembly of phycocyanin to generate fluorescence. To study the possible binding sites of apo-phycocyanin and phycocyanobilin, the Cys-82 and Cys-153 of the ß subunit were individually mutated, giving two kinds of mutants. The results show that Cys-153 maybe the active site for ß subunit binding to phycocyanobilins, which is catalyzed by CpcT in A. platensis FACHB314.


Assuntos
Proteínas de Bactérias/genética , Pigmentos Biliares/metabolismo , Liases/genética , Oscillatoria/genética , Ficobilinas/metabolismo , Ficocianina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Domínio Catalítico/genética , Clonagem Molecular , DNA Bacteriano/genética , Expressão Gênica , Liases/metabolismo , Dados de Sequência Molecular , Mutação , Oscillatoria/enzimologia , Ficocianina/biossíntese , Estrutura Secundária de Proteína
4.
Cell Mol Neurobiol ; 30(3): 461-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19838798

RESUMO

The effect of nerve growth factor (NGF) on tunicamycin (Tm)-treated neurons in the trigeminal ganglion was investigated by use of caspase-3 immunohistochemistry. In intact embryos at embryonic day 16.5, only a few caspase-3-immunoreactivity were detected in the ganglion neurons. Mean +/- SE of the density of the immunoreactivity was 0.22 +/- 0.03%. In contrast, the number of the immunoreactive neurons was increased at 24 h after injection of 0.5 microg Tm in 1 microl of 0.05 N NaOH solution into mouse embryos at embryonic day 15.5. The density of immunoreactivity was also increased (mean +/- SE = 1.44 +/- 0.11%) compared to intact and 0.05 N NaOH-treated embryos (mean +/- SE = 0.35 +/- 0.03%). The Tm treatment caused increase of the number of trigeminal neurons representing apoptotic profiles (intact, mean +/- SE = 79.3 +/- 8.5; 0.05 N NaOH, mean +/- SE = 132 +/- 11.5; 0.5 microg Tm, mean +/- SE = 370.2 +/- 64.8). In addition, NGF significantly prevented the increase of density of the immunoreactivity (mean +/- SE = 0.54 +/- 0.16%) and the number of apoptotic cells (mean +/- SE = 146.2 +/- 11.3). Saline application (without NGF) had no effect on Tm-induced increase of the immunoreactivity (mean +/- SE = 1.78 +/- 0.23%) or the apoptotic profiles (mean +/- SE = 431.9 +/- 80.5). These results indicate that Tm-induced cell death in the trigeminal ganglion is suppressed by NGF in the mouse embryo.


Assuntos
Apoptose/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Gânglio Trigeminal/embriologia , Tunicamicina/antagonistas & inibidores , Animais , Antibacterianos/antagonistas & inibidores , Antibacterianos/toxicidade , Apoptose/fisiologia , Caspase 3/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/uso terapêutico , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neurotoxinas/antagonistas & inibidores , Neurotoxinas/toxicidade , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Gânglio Trigeminal/citologia , Gânglio Trigeminal/metabolismo , Tunicamicina/toxicidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-17556811

RESUMO

In order to explore the relationship between grain yield and photosynthesis, the yield composition and leaf photosynthetic rate in some super hybrid rices and ordinary hybrid rice 'Shanyou 63' as control were measured in 2000-2005. The results were as follows. (1) The yield levels of the four super hybrid rices, 'Pei'ai 64S/E32', 'P88S/0293', 'Jin23A/611' and 'GD-1S/RB207', were significantly higher, being 108%-120% of 'Shanyou 63'. (2) These super hybrid rices had a better plant type with more erect upper layer leaves and bigger panicles or more spikelets per panicle, being 125%-177% of spikelets Shanyou 63 spikelets. (3) Net photosynthetic rates of these super hybrid rices were significantly higher in the second leaf but not necessarily in the first leaf or flag leaf than those of spikelets Shanyou 63 spikelets. (4) The removal of half flag leaf led to a decline in the seed-setting rate, while the removal of half panicle induced its increase in spikelets GD-1S/RB207 spikelets. Hence, higher yield in these super hybrid rices can be attributed to their bigger panicles, better plant type and higher light use efficiency of their canopies. Raising the photosynthetic capacity of each leaf, especially flag leaf, is the key to overcome the photosynthate-source restriction on grain yield and to make a new breakthrough of yield potential in future breeding of super hybrid rice.


Assuntos
Oryza/crescimento & desenvolvimento , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Vigor Híbrido , Hibridização Genética , Oryza/genética , Oryza/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...