Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 515: 152-159, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29335182

RESUMO

In situ pegylated (PEGylated) microporous membranes have been extensively reported using poly(ethylene glycol) (PEG)-based polymers as blending additives. Alternatively, free standing PEGylated polysulfone (PSf) membranes with excellent hydrophilicity and antifouling ability were directly fabricated from polysulfone/poly(ethylene glycol) methyl ether methacrylate (PSf/PEGMA) solutions after in situ cross-linking polymerization without any treatment via vapor induced phase separation (VIPS) process for the first time. The microstructures and performances of the resulting membranes shifted regularly by adjusting exposure time of the liquid film in humid air. With increasing exposure time, plenty of worm-like networks formed and distributed on membrane surfaces, meanwhile cross-sectional morphology changed from asymmetric finger-like microporous structure to symmetric cellular-like structure, resulting in better mechanical stability. As the exposure time raised from 0 to 5 min, the surface coverage of carboxyl groups increased from ∼1.1 to 4.0 mol%, leading to the decrease in water contact angle from ∼63 to 27° and the increase in water flux from ∼110 to 512 L m-2 h-1. In addition, at prolonged exposure time, increasing hydrophilic PEG chains migrated to membrane surfaced and repelled the adsorption and deposition of protein, resulting in better antifouling ability. The findings of this study offer a facile and high efficient strategy for flexible design and fabrication of the in situ PEGylated membranes with desirable structures and performances in large scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...