Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 933319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873057

RESUMO

When utilized in energy devices, the restacking tendency of MXene Ti3C2T x inhibits its electrochemical performance. Using aerosol jet printing (AJP) technology, hybrid Ti3C2T x /C nanospheres are synthesized with C nanoparticle-bonded MXene nanosheets, and the restacking of MXene nanosheets is blocked efficiently. The formation mechanism for hybrid Ti3C2T x /C nanospheres has been hypothesized, and the Ti3C2T x /C is anticipated to assemble and shape along the droplet surface in tandem with the Marangoni flow within the droplet. The planar microsupercapacitor devices generated from these hybrid spherical nanostructures with increased interlayer spacing exhibit exceptional areal capacitance performance. This concept offers a straightforward and effective method for constructing 3D-structured MXene with suppressed self-stacking for diverse high-performance micro energy storage devices.

2.
Nanomaterials (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36616092

RESUMO

Flexible strain sensors with significant extensibility, stability, and durability are essential for public healthcare due to their ability to monitor vital health signals noninvasively. However, thus far, the conductive networks have been plagued by the inconsistent interface states of the conductive components, which hampered the ultimate sensitivity performance. Here, we demonstrate structurally integrated 3D conductive networks-based flexible strain sensors of hybrid Ag nanorods/nanoparticles(AgNRs/NPs) by combining a droplet-based aerosol jet printing(AJP) process and a feasible transfer process. Structurally integrated 3D conductive networks have been intentionally developed by tweaking droplets deposition behaviors at multi-scale for efficient hybridization and ordered assembly of AgNRs/NPs. The hybrid AgNRs/NPs enhance interfacial conduction and mechanical properties during stretching. In a strain range of 25%, the developed sensor demonstrates an ideal gauge factor of 23.18. When real-time monitoring of finger bending, arm bending, squatting, and vocalization, the fabricated sensors revealed effective responses to human movements. Our findings demonstrate the efficient droplet-based AJP process is particularly capable of developing advanced flexible devices for optoelectronics and wearable electronics applications.

3.
ACS Omega ; 6(48): 33067-33074, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34901658

RESUMO

Additive manufacturing techniques have revolutionized the field of fabricating micro-supercapacitors (MSCs) with a high degree of pattern and geometry flexibility. However, traditional additive manufacturing processes are based on the functionality of microstructural modulation, which is essential for device performance. Herein, Ti3C2T x MXene was chosen to report a convenient aerosol jet printing (AJP) process for the in situ curling and alignment of MXene nanosheets. The aerosol droplet provides a microscale regime for curling MXene monolayers while their alignment is performed by the as-generated directional stress derived from the quasi-conical fiber array (CFA)-guided parallel droplet flow. Interdigital microelectrodes were further developed with the curled MXene and a satisfying areal capacitance performance has been demonstrated. Importantly, the AJP technique holds promise for revolutionizing additive manufacturing techniques for fabricating future smart microelectronics and devices not only in the microscale but also in the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...