Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 529, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862926

RESUMO

BACKGROUND: The sorghum aphid Melanaphis sacchari (Zehntner) (Homoptera: Aphididae) is an important insect in the late growth phase of sorghum (Sorghum bicolor L.). However, the mechanisms of sorghum response to aphid infestation are unclear. RESULTS: In this paper, the mechanisms of aphid resistance in different types of sorghum varieties were revealed by studying the epidermal cell structure and performing a transcriptome and metabolome association analysis of aphid-resistant and aphid-susceptible varieties. The epidermal cell results showed that the resistance of sorghum to aphids was positively correlated with epidermal cell regularity and negatively correlated with the intercellular space and leaf thickness. Transcriptome and metabolomic analyses showed that differentially expressed genes in the resistant variety HN16 and susceptible variety BTX623 were mainly enriched in the flavonoid biosynthesis pathway and differentially expressed metabolites were mainly related to isoflavonoid biosynthesis and flavonoid biosynthesis. The q-PCR results of key genes were consistent with the transcriptome expression results. Meanwhile, the metabolome test results showed that after aphidinfestation, naringenin and genistein were significantly upregulated in the aphid-resistant variety HN16 and aphid-susceptible variety BTX623 while luteolin was only significantly upregulated in BTX623. These results show that naringenin, genistein, and luteolin play important roles in plant resistance to aphid infestation. The results of exogenous spraying tests showed that a 1‰ concentration of naringenin and genistein is optimal for improving sorghum resistance to aphid feeding. CONCLUSIONS: In summary, the physical properties of the sorghum leaf structure related to aphid resistance were studied to provide a reference for the breeding of aphid-resistant varieties. The flavonoid biosynthesis pathway plays an important role in the response of sorghum aphids and represents an important basis for the biological control of these pests. The results of the spraying experiment provide insights for developing anti-aphid substances in the future.


Assuntos
Afídeos , Metaboloma , Sorghum , Transcriptoma , Sorghum/genética , Sorghum/parasitologia , Sorghum/metabolismo , Afídeos/fisiologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...