Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytother Res ; 35(10): 5883-5898, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34427348

RESUMO

Efficient therapy of idiopathic pulmonary fibrosis (IPF) is still a major challenge. The current studies with single-target drug therapy are the pessimistic approaches due to the complex characteristics of IPF. Here, a combination therapy of Tanshinone IIA and Puerarin for IPF was proposed to alleviate IPF due to their antiinflammatory and anti-fibrotic effects. In vivo, the combination therapy could significantly attenuate the area of ground glass opacification that was presented by 85% percentile density score of the micro-CT images when compared to single conditions. In addition, the combination therapy enormously improved the survival rate and alleviated pathological changes in bleomycin (BLM)-induced IPF mice. By using a wide spectrum of infiltration biomarkers in immunofluorescence assay in pathological sections, we demonstrate that fewer IL6 related macrophage infiltration and fibrosis area after this combination therapy, and further proved that IL6-JAK2-STAT3/STAT1 is the key mechanism of the combination therapy. In vitro, combination therapy markedly inhibited the fibroblasts activation and migration which was induced by TGF-ß1 or/and IL6 through JAK2-STAT3/STAT1 signaling pathway. This study demonstrated that combination therapeutic effect of TanIIA and Pue on IPF may be related to the reduced inflammatory response targeting IL6, which could be an optimistic and effective approach for IPF.


Assuntos
Interleucina-6 , Fibrose Pulmonar , Abietanos , Animais , Bleomicina , Fibroblastos/metabolismo , Interleucina-6/metabolismo , Isoflavonas , Pulmão/metabolismo , Camundongos , Fibrose Pulmonar/tratamento farmacológico , Fator de Transcrição STAT1 , Transdução de Sinais
2.
Angew Chem Int Ed Engl ; 60(6): 3062-3070, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33112477

RESUMO

Molecular self-assembly has been widely used to develop nanocarriers for drug delivery. However, most of them have unsatisfactory drug loading capacity (DLC) and the dilemma between stimuli-responsiveness and stability, stagnating their translational process. Herein, we overcame these drawbacks using dynamic combinatorial chemistry. A carrier molecule was spontaneously and quantitatively synthesized, aided by co-self-assembly with a template molecule and an anti-cancer drug doxorubicin (DOX) from a dynamic combinatorial library that was operated by disulfide exchange under thermodynamic control. The highly selective synthesis guaranteed a stable yet pH- and redox- responsive nanocarrier with a maximized DLC of 40.1 % and an enhanced drug potency to fight DOX resistance in vitro and in vivo. Our findings suggested that harnessing the interplay between synthesis and self-assembly in complex chemical systems could yield functional nanomaterials for advanced applications.


Assuntos
Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos/química , Nanotubos/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxirredução , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...