Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121588, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38941851

RESUMO

There have been notable changes in precipitation patterns on the Loess Plateau (LP) of China in recent decades, and numerous attribution studies have focused on sea surface temperature anomalies and atmospheric circulation changes induced by aerosols and greenhouse gases emission. However, the influences of global land use and land cover change (LULCC) as an important forcing factor in the climate system on regional precipitation remains poorly understood. In this study, we quantified the impacts of LULCC on precipitation and the water vapor budget in the LP region, utilizing data from LULCC forcing experiments conducted by the sixth phase of the Coupled Model Intercomparison Project (CMIP6). Although global LULCC forcing exerted a negative effect on long-term mean precipitation on the LP region from 1850 to 2014, the different response characteristics were detected during different time periods. The global LULCC caused a decrease of 14 mm in annual precipitation during the period of 1850-1960. Conversely, from 1961 to 2014, it led to an increase of 6.4 mm, which is largely attributed to the enhanced water vapor transport along the southern boundary and westerly belt of the LP region. Moreover, from the perspective of the net water vapor balance of the entire LP, although LULCC caused net water vapor export during both periods 1850-1960 and 1961-2014, the export during the latter period (0.20 × 104 kg s-1) was smaller than that during the former period (0.28 × 104 kg s-1), indicating that the global expansion of grassland and cropland, along with the continuous rise in the leaf area index from 1961 to 2014, contributed to retaining more water vapor within the LP, which in turn was more favorable for precipitation. These findings provide valuable insights into the reasons behind precipitation variations in the LP region, emphasizing that global vegetation restoration and greening play a significant role in improving precipitation in ecologically fragile areas.

2.
Carbon Balance Manag ; 16(1): 24, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34398330

RESUMO

BACKGROUND: Soil organic carbon (SOC) plays a crucial role in the global carbon cycle and terrestrial ecosystem functions. It is widely known that climate change and soil water content (SWC) could influence the SOC dynamics; however, there are still debates about how climate change, especially climate warming, and SWC impact SOC. We investigated the spatiotemporal changes in SOC and its responses to climate warming and root-zone SWC change using the coupled hydro-biogeochemical model (SWAT-DayCent) and climate scenarios data derived under the three Representative Concentration Pathways (RCPs2.6, 4.5, and 8.5) from five downscaled Global Climate Models (GCMs) in a typical loess watershed--the Jinghe River Basin (JRB) on the Chinese Loess Plateau. RESULTS: The air temperature would increase significantly during the future period (2017-2099), while the annual precipitation would increase by 2.0-13.1% relative to the baseline period (1976-2016), indicating a warmer and wetter future in the JRB. Driven by the precipitation variation, the root-zone SWC would also increase (by up to 27.9% relative to the baseline under RCP4.5); however, the SOC was projected to decrease significantly under the future warming climate. The combined effects of climate warming and SWC change could more reasonably explain the SOC loss, and this formed hump-shaped response surfaces between SOC loss and warming-SWC interactions under both RCP2.6 and 8.5, which can help explain diverse warming effects on SOC with changing SWC. CONCLUSIONS: The study showed a significant potential carbon source under the future warmer and wetter climate in the JRB, and the SOC loss was largely controlled by future climate warming and the root-zone SWC as well. The hump-shaped responses of the SOC loss to climate warming and SWC change demonstrated that the SWC could mediate the warming effects on SOC loss, but this mediation largely depended on the SWC changing magnitude (drier or wetter soil conditions). This mediation mechanism about the effect of SWC on SOC would be valuable for enhancing soil carbon sequestration in a warming climate on the Loess Plateau.

3.
Sci Total Environ ; 698: 134261, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31783458

RESUMO

Sediment in rivers is the dominant material source for ecosystems in lower reaches and estuaries, and it is undergoing large variations globally in recent decades. Though we have knowledge that human activities are greatly affecting land surface ecosystem processes and functions, the relationships between sediment transport regime and the intensifying human activities, are still poorly understood. This study was to investigate the changes of sediment transport regime due to the large-scale ecological restoration in the Middle Yellow River Basin (MYRB). In this study, we examined the change of the sediment rating curves using daily sediment load and streamflow data from 30 stations during time periods including pre- and post-ecological restoration in this region. We found the pair-relationship of the rating parameters (coefficient and exponent), denoted as coefficient-exponent pair-line, is a critical indicator that can detect the shift of sediment transport regime due to disturbed land surface conditions, though the changed hydrometeorological condition may just influence the absolute values of the rating parameters. Our analysis indicates there was a significant and interesting change of the sediment transport regime in the MYRB characterized by the consistent shift of the coefficient-exponent pair-line, together with an increasing exponent and a decreasing coefficient. This changed sediment transport regime can tell that sediment delivery would become lower for normal discharge conditions but potentially higher for extreme discharge conditions, and this phenomenon seems more distinct in relatively smaller watersheds, suggesting a higher risk of the potential high sediment delivery for extreme rainfall conditions especially for small watersheds. Our study would be informative and valuable to decision makers for sustainable watershed management in the MYRB when considering the changed sediment delivery.

4.
Sci Total Environ ; 697: 134064, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31476506

RESUMO

The water and carbon cycles are tightly linked and play a key role in the material and energy flows between terrestrial ecosystems and the atmosphere, but the interactions of water and carbon cycles are not quite clear. The global climate change and intensive human activities could also complicate the water and carbon coupling processes. Better understanding the coupled water-carbon cycles and their spatiotemporal evolution can inform management and decision-making efforts regarding carbon uptake, food production, water resources, and climate change. The integration of remote sensing and numeric modeling is an attractive approach to address the challenge. Remote sensing can provide extensive data for a number of variables at regional scale and support models, whereas process-based modeling can facilitate investigating the processes that remote sensing cannot well handle (e.g., below-ground and lateral material movement) and backcast/forecast the impacts of environmental change. Over the past twenty years, an increasing number of studies using a variety of remote sensing products together with numeric models have examined the water-carbon interactions. This article reviewed the methodologies for integrating remote sensing data into these models and the modeling of water-carbon coupling processes. We first summarized the major remote sensing datasets and models used for studying the coupled water-carbon cycles. We then provided an overview of the methods for integrating remote sensing data into water-carbon models, and discussed their strengths and challenges. We also prospected the development of potential new remote sensing datasets, modeling methods, and their potential applications in the field of eco-hydrology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...