Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(32): 38666-38679, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34351733

RESUMO

Fouling and accretion have negative impacts on a plethora of processes. To mitigate heterogeneous nucleation of a foulant, lowering the surface energy and reducing surface roughness are desired. Here, we develop a multilayer coating to mitigate solution-based heterogeneous fouling for internal flows. The first layer is a sol-gel silicon dioxide (SiO2) coating, which acts as a corrosion barrier, creates the surface chemistry needed for covalent bonding of the slippery omniphobic covalently attached liquid (SOCAL), and ensures an atomically smooth (<1 nm) interface. The second layer bonded to SiO2 is SOCAL, which further reduces the nucleation rate due to its low surface energy (<12 mJ/m2). The presence of a consistent sol-gel SiO2 base coating to bind to the SOCAL enables application to various metallic substrates. The coating is solid, making it more durable when compared to alternative slippery liquid-infused surfaces (LIS) that suffer from lubricant loss. To demonstrate performance and scalability, we apply our coating to the internal walls of aluminum (Al) tubing and test its fouling performance in a flow-fouling setup with single-phase flow of synthetic seawater. The seawater consists of saturated calcium sulfide (CaSO4), and fouling is characterized in both laminar and turbulent flow regimes (Reynolds numbers 1030 to 9300). Our coating demonstrated a reduction in salt scale fouling by 95% when compared to uncoated Al tubes. Furthermore, we show our coating to withstand turbulent flow conditions, mechanical abrasion loading, and corrosive environments for durations much longer than LIS. Our work demonstrates a coating methodology applicable to a variety of metal substrates and internal passages to achieve antifouling in single-phase flows.

2.
ACS Appl Mater Interfaces ; 13(3): 4519-4534, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33440119

RESUMO

Corrosion of metallic substrates is a problem for a variety of applications. Corrosion can be mitigated with the use of an electrically insulating coating protecting the substrate. Thick millimetric coatings, such as paints, are generally more corrosion-resistant when compared to nanoscale coatings. However, for thermal systems, thick coatings are undesirable due to the resulting decrease in the overall heat transfer stemming from the added coating thermal resistance. Hence, the development of ultrathin (<10 µm) coatings is of great interest. Ultrathin inorganic silicon dioxide (SiO2) coatings applied by sol-gel chemistries or chemical vapor deposition, as well as organic coatings such as Parylene C, have great anticorrosion performance due to their high dielectric breakdown and low moisture permeability. However, their application to arbitrarily shaped metals is difficult or expensive. Here, we develop a sol-gel solution capable of facile and controllable dip coating on arbitrary metals, resulting in a very smooth (<5 nm roughness), thin (∼3 µm), and conformal coating of dense SiO2. To benchmark our material, we compared the corrosion performance with in-house synthesized superhydrophobic aluminum and copper samples, Parylene C-coated substrates, and smooth hydrophobic surfaces functionalized with a hydrophobic self-assembled monolayer. For comparison with state-of-the-art commercial coatings, copper substrates were coated with an organo-ceramic SiO2 layer created by an elevated temperature and atmospheric pressure metal organic chemical vapor deposition process. To characterize corrosion performance, we electrochemically investigated the corrosion resistance of all samples through potentiodynamic polarization studies and electrochemical impedance spectroscopy. To benchmark the coating durability and to demonstrate scalability, we tested internally coated copper tubes in a custom-built corrosion flow loop to simulate realistic working conditions with shear and particulate saltwater flow. The sol-gel and Parylene C coatings demonstrated a 95% decrease in corrosion rate during electrochemical tests. Copper tube weight loss was reduced by 75% for the sol-gel SiO2-coated tubes when seawater was used as the corrosive fluid in the test loop. This work not only demonstrates scalable coating methodologies for applying ultrathin anticorrosion coatings but also develops mechanistic understanding of corrosion mechanisms on a variety of functional surfaces and substrates.

3.
Math Biosci Eng ; 17(6): 7411-7427, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33378903

RESUMO

Ultrasonic metal welding (UMW) is a solid-state joining technique with varied industrial applications. Despite of its numerous advantages, UMW has a relative narrow operating window and is sensitive to variations in process conditions. As such, it is imperative to quantitatively characterize the influence of welding parameters on the resulting joint quality. The quantification model can be subsequently used to optimize the parameters. Conventional response surface methodology (RSM) usually employs linear or polynomial models, which may not be able to capture the intricate, nonlin-ear input-output relationships in UMW. Furthermore, some UMW applications call for simultaneous optimization of multiple quality indices such as peel strength, shear strength, electrical conductivity, and thermal conductivity. To address these challenges, this paper develops a machine learning (ML)- based RSM to model the input-output relationships in UMW and jointly optimize two quality indices, namely, peel and shear strengths. The performance of various ML methods including spline regression, Gaussian process regression (GPR), support vector regression (SVR), and conventional polynomial re-gression models with different orders is compared. A case study using experimental data shows that GPR with radial basis function (RBF) kernel and SVR with RBF kernel achieve the best prediction accuracy. The obtained response surface models are then used to optimize a compound joint strength indicator that is defined as the average of normalized shear and peel strengths. In addition, the case study reveals different patterns in the response surfaces of shear and peel strengths, which has not been systematically studied in the literature. While developed for the UMW application, the method can be extended to other manufacturing processes.

4.
ACS Appl Mater Interfaces ; 12(10): 12054-12067, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32045210

RESUMO

Scale formation presents an enormous cost to the global economy. Classical nucleation theory dictates that to reduce the heterogeneous nucleation of scale, the surface should have low surface energy and be as smooth as possible. Past approaches have focused on lowering surface energy via the use of hydrophobic coatings and have created atomically smooth interfaces to eliminate nucleation sites, or both, via the infusion of low-surface-energy lubricants into rough superhydrophobic substrates. Although lubricant-based surfaces are promising candidates for antiscaling, lubricant drainage inhibits their utilization. Here, we develop methodologies to deposit slippery omniphobic covalently attached liquids (SOCAL) on arbitrary substrates. Similar to lubricant-based surfaces, SOCAL has ultralow roughness and surface energy, enabling low nucleation rates and eliminating the need to replenish the lubricant. To enable SOCAL coating on metals, we investigated the surface chemistry required to ensure high-quality functionalization as measured by ultralow contact angle hysteresis (<3°). Using a multilayer deposition approach, we first electrophoretically deposit (EPD) silicon dioxide (SiO2) as an intermediate layer between the metallic substrate and SOCAL. The necessity of EPD SiO2 is to smooth (<10 nm roughness) as well as to enable the proper surface chemistry for SOCAL bonding. To characterize antiscaling performance, we utilized calcium sulfate (CaSO4) scale tests, showing a 20× reduction in scale deposition rate than untreated metallic substrates. Descaling tests revealed that SOCAL dramatically decreases scale adhesion, resulting in rapid removal of scale buildup. Our work not only demonstrates a robust methodology for depositing antiscaling SOCAL coatings on metals but also develops design guidelines for the creation of antifouling coatings for alternate applications such as biofouling and high-temperature coking.

5.
Environ Sci Pollut Res Int ; 26(5): 4730-4745, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30565108

RESUMO

The novel waste alkaline battery-sawdust-based adsorbents (WABAs) are prepared by a two-stage activation method with the negative electrode materials as activator and different doping ratio of the positive electrode materials and pine sawdust as raw materials. The characteristics of the WABAs are analyzed by SEM, XRD, FT-IR, and specific surface determination (SBET). The Pb2+ adsorption properties of the WABAs are studied by changing the pH of solution, contact time, initial concentration, and temperature. It turns out that when the doping mass ratio is 1:4, the optimum performance of the WABAs is obtained, and comparing with the samples prepared by pure biomass, the iodine adsorption value, total acid groups, and cation exchange capacity (CEC) separately increased by 13, 106, and 22%, respectively. Kinetic studies show that the pseudo-second-order model is more suitable for describing the Pb2+ adsorption process and the Langmuir isotherm provides better fitting to the equilibrium data. The thermodynamic parameters indicate the adsorption process would be spontaneous and endothermic. Besides, the prepared WABAs could be reused for 5 cycles with high removal efficiency. This study provides an alternative route for waste alkaline battery treatment. Graphical abstract The schematic diagram of synthesis of waste batteries-sawdust-based adsorbent via a two-stage activation method for Pb2+ removal.


Assuntos
Fontes de Energia Elétrica , Chumbo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Madeira , Adsorção , Biomassa , Eletrodos , Concentração de Íons de Hidrogênio , Cinética , Chumbo/química , Microscopia Eletrônica de Varredura , Reciclagem , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica , Resíduos , Poluentes Químicos da Água/química , Difração de Raios X
6.
ACS Appl Mater Interfaces ; 9(10): 8602-8608, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28194936

RESUMO

Supramolecular chemotherapy is aimed to employ supramolecular approach for regulating the cytotoxicity and improving the efficiency of antitumor drugs. In this paper, we demonstrated a new example of supramolecular chemotherapy by utilizing the clinical antitumor drug, oxaliplatin, which is the specific drug for colorectal cancer treatment. Cytotoxicity of oxaliplatin to the colorectal normal cell could be significantly decreased by host-guest complexation between oxaliplatin and cucurbit[7]uril (CB[7]). More importantly, oxaliplatin-CB[7] exhibited cooperatively enhanced antitumor activity than oxaliplatin itself. On the one hand, the antitumor activity of oxaliplatin can reappear by competitive replacement of spermine from oxaliplatin-CB[7]; on the other hand, CB[7] can consume the overexpressed spermine in tumor environments, which is essential for tumor cell growth. These two events can lead to the cooperatively enhanced antitumor performance. Supramolecular chemotherapy can be applied to treat with spermine-overexpressed tumors. It is highly anticipated that this strategy may be employed in many other clinical antitumor drugs, which opens a new horizon of supramolecular chemotherapy for potential applications in clinical antitumor treatments.


Assuntos
Oxaliplatina/química , Hidrocarbonetos Aromáticos com Pontes , Preparações de Ação Retardada , Imidazóis , Espermina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...