Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 31(17): e1808197, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30844100

RESUMO

The phenomenon of contact electrification (CE) has been known for thousands of years, but the nature of the charge carriers and their transfer mechanisms are still under debate. Here, the CE and triboelectric charging process are studied for a metal-dielectric case at different thermal conditions by using atomic force microscopy and Kelvin probe force microscopy. The charge transfer process at the nanoscale is found to follow the modified thermionic-emission model. In particular, the focus here is on the effect of a temperature difference between two contacting materials on the CE. It is revealed that hotter solids tend to receive positive triboelectric charges, while cooler solids tend to be negatively charged, which suggests that the temperature-difference-induced charge transfer can be attributed to the thermionic-emission effect, in which the electrons are thermally excited and transfer from a hotter surface to a cooler one. Further, a thermionic-emission band-structure model is proposed to describe the electron transfer between two solids at different temperatures. The findings also suggest that CE can occur between two identical materials owing to the existence of a local temperature difference arising from the nanoscale rubbing of surfaces with different curvatures/roughness.

2.
Faraday Discuss ; 197: 207-224, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28184397

RESUMO

Various carbonaceous species were controllably deposited on Co/Al2O3 catalysts using ethylene as carbon source during the activation process for Fischer-Tropsch synthesis (FTS). Atomic, polymeric and graphitic carbon were distinguished by Raman spectroscopy, thermoanalysis and temperature programmed hydrogenation. Significant changes occurred in both the catalytic activity and selectivity toward hydrocarbon products after ethylene treatment. The activity decreased along with an increase in CH4 selectivity, at the expense of a remarkable decrease of heavy hydrocarbon production, resulting in enhanced selectivity for the gasoline fraction. In situ XPS experiments show the possible electron transfer from cobalt to carbon and the blockage of metallic cobalt sites, which is responsible for the deactivation of the catalyst. DFT calculations reveal that the activation barrier (Ea) of methane formation decreases by 0.61 eV on the carbon-absorbed Co(111) surface, whereas the Ea of the CH + CH coupling reaction changes unnoticeably. Hydrogenation of CHx to methane becomes the preferable route among the elementary reactions on the Co(111) surface, leading to dramatic changes in the product distribution. Detailed coke-induced deactivation mechanisms of Co-based catalysts during FTS are discussed.

3.
ACS Appl Mater Interfaces ; 8(21): 13418-25, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27169327

RESUMO

A novel photoanode structure modified by porous flowerlike CeO2 microspheres as a scattering layer with a thin TiO2 film deposited by atomic layer deposition (ALD) is prepared to achieve a significantly enhanced performance of dye-sensitized solar cells (DSSCs). The light scattering capability of the photoanode with the porous CeO2 microsphere layer is considerably improved. The interconnection of particles and electrical contact between bilayer and conducting substrate is further enhanced by an ALD-deposited TiO2 film, which effectively reduces the electron recombination and facilitates electron transport and thus enhances the charge collection efficiency of DSSCs. As a result, the overall efficiency of the obtained TiO2-CeO2-based cells reaches 9.86%, which is 31% higher than that of the DSSCs with a conventional TiO2 photoanode.

4.
Opt Express ; 22(14): 16686-93, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25090487

RESUMO

We have investigated the focusing properties of nanostructured plasmonic spiral lens by using linearly polarized illumination, and analysed its field enhancement effect based on the phase matching theory and finite-difference time-domain simulation. We demonstrate that under linearly polarized illumination, spiral plasmonic lens shows focusing property regardless its polarization directions, and the focal spot is about 250nm when the incident wavelength is 671nm. The intensity of the focal spot could also be controlled by altering the radius, the number of turns and the width of the nanostructured spiral slot which are confirmed by finite-difference time-domain simulation.

5.
Sci Rep ; 4: 4288, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24608736

RESUMO

Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system.

6.
J Am Chem Soc ; 135(10): 4149-58, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23428163

RESUMO

Fischer-Tropsch synthesis (FTS) is an important catalytic process for liquid fuel generation, which converts coal/shale gas/biomass-derived syngas (a mixture of CO and H2) to oil. While FTS is thermodynamically favored at low temperature, it is desirable to develop a new catalytic system that could allow working at a relatively low reaction temperature. In this article, we present a one-step hydrogenation-reduction route for the synthesis of Pt-Co nanoparticles (NPs) which were found to be excellent catalysts for aqueous-phase FTS at 433 K. Coupling with atomic-resolution scanning transmission electron microscopy (STEM) and theoretical calculations, the outstanding activity is rationalized by the formation of Co overlayer structures on Pt NPs or Pt-Co alloy NPs. The improved energetics and kinetics from the change of the transition states imposed by the lattice mismatch between the two metals are concluded to be the key factors responsible for the dramatically improved FTS performance.


Assuntos
Cobalto/química , Hidrocarbonetos/síntese química , Nanopartículas Metálicas/química , Platina/química , Temperatura , Monóxido de Carbono/química , Catálise , Hidrocarbonetos/química , Hidrogênio/química , Hidrogenação , Oxirredução , Tamanho da Partícula , Propriedades de Superfície , Água/química
7.
J Am Chem Soc ; 134(38): 15814-21, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-22938192

RESUMO

Iron carbide nanoparticles have long been considered to have great potential in new energy conversion, nanomagnets, and nanomedicines. However, the conventional relatively harsh synthetic conditions of iron carbide hindered its wide applications. In this article, we present a facile wet-chemical route for the synthesis of Hägg iron carbide (Fe(5)C(2)) nanoparticles, in which bromide was found to be the key inducing agent for the conversion of Fe(CO)(5) to Fe(5)C(2) in the synthetic process. Furthermore, the as-synthesized Fe(5)C(2) nanoparticles were applied in the Fischer-Tropsch synthesis (FTS) and exhibited intrinsic catalytic activity in FTS, demonstrating that Fe(5)C(2) is an active phase for FTS. Compared with a conventional reduced-hematite catalyst, the Fe(5)C(2) nanoparticles showed enhanced catalytic performance in terms of CO conversion and product selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...