Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083298

RESUMO

Rice grain number is a crucial agronomic trait impacting yield. In this study, we characterized a quantitative trait locus (QTL), GRAIN NUMBER 1.1 (GN1.1), which encodes a Flowering Locus T-like1 (FT-L1) protein and acts as a negative regulator of grain number in rice. The elite allele GN1.1B, derived from the Oryza indica variety, BF3-104, exhibits a 14.6% increase in grain yield compared with the O. japonica variety, Nipponbare, based on plot yield tests. We demonstrated that GN1.1 interacted with and enhanced the stability of ADP-ribosylation factor (Arf)-GTPase-activating protein (Gap), OsZAC. Loss of function of OsZAC results in increased grain number. Based on our data, we propose that GN1.1B facilitates the elevation of auxin content in young rice panicles by affecting polar auxin transport (PAT) through interaction with OsZAC. Our study unveils the pivotal role of the GN1.1 locus in rice panicle development and presents a novel, promising allele for enhancing rice grain yield through genetic improvement.

2.
Nat Commun ; 15(1): 996, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307858

RESUMO

Postzygotic reproductive isolation, which results in the irreversible divergence of species, is commonly accompanied by hybrid sterility, necrosis/weakness, or lethality in the F1 or other offspring generations. Here we show that the loss of function of HWS1 and HWS2, a couple of duplicated paralogs, together confer complete interspecific incompatibility between Asian and African rice. Both of these non-Mendelian determinants encode the putative Esa1-associated factor 6 (EAF6) protein, which functions as a characteristic subunit of the histone H4 acetyltransferase complex regulating transcriptional activation via genome-wide histone modification. The proliferating tapetum and inappropriate polar nuclei arrangement cause defective pollen and seeds in F2 hybrid offspring due to the recombinant HWS1/2-mediated misregulation of vitamin (biotin and thiamine) metabolism and lipid synthesis. Evolutionary analysis of HWS1/2 suggests that this gene pair has undergone incomplete lineage sorting (ILS) and multiple gene duplication events during speciation. Our findings have not only uncovered a pair of speciation genes that control hybrid breakdown but also illustrate a passive mechanism that could be scaled up and used in the guidance and optimization of hybrid breeding applications for distant hybridization.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Reprodução , Evolução Biológica , Hibridização Genética
3.
Nat Commun ; 14(1): 1640, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964129

RESUMO

Rice panicle architecture determines the grain number per panicle and therefore impacts grain yield. The OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway shapes panicle architecture by regulating cytokinin metabolism. However, the specific upstream ligands perceived by the OsER1 receptor are unknown. Here, we report that the EPIDERMAL PATTERNING FACTOR (EPF)/EPF-LIKE (EPFL) small secreted peptide family members OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 synergistically contribute to rice panicle morphogenesis by recognizing the OsER1 receptor and activating the mitogen-activated protein kinase cascade. Notably, OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 negatively regulate spikelet number per panicle, but OsEPFL8 also controls rice spikelet fertility. A osepfl6 osepfl7 osepfl9 triple mutant had significantly enhanced grain yield without affecting spikelet fertility, suggesting that specifically suppressing the OsEPFL6-OsER1, OsEPFL7-OsER1, and OsEPFL9-OsER1 ligand-receptor pairs can optimize rice panicle architecture. These findings provide a framework for fundamental understanding of the role of ligand-receptor signaling in rice panicle development and demonstrate a potential method to overcome the trade-off between spikelet number and fertility.


Assuntos
Oryza , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/metabolismo , Ligantes , Grão Comestível/metabolismo , Transporte Biológico
4.
Mol Plant ; 15(12): 1908-1930, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36303433

RESUMO

Ongoing soil salinization drastically threatens crop growth, development, and yield worldwide. It is therefore crucial that we improve salt tolerance in rice by exploiting natural genetic variation. However, many salt-responsive genes confer undesirable phenotypes and therefore cannot be effectively applied to practical agricultural production. In this study, we identified a quantitative trait locus for salt tolerance from the African rice species Oryza glaberrima and named it as Salt Tolerance and Heading Date 1 (STH1). We found that STH1 regulates fatty acid metabolic homeostasis, probably by catalyzing the hydrolytic degradation of fatty acids, which contributes to salt tolerance. Meanwhile, we demonstrated that STH1 forms a protein complex with D3 and a vital regulatory factor in salt tolerance, OsHAL3, to regulate the protein abundance of OsHAL3 via the 26S proteasome pathway. Furthermore, we revealed that STH1 also serves as a co-activator with the floral integrator gene Heading date 1 to balance the expression of the florigen gene Heading date 3a under different circumstances, thus coordinating the regulation of salt tolerance and heading date. Notably, the allele of STH1 associated with enhanced salt tolerance and high yield is found in some African rice accessions but barely in Asian cultivars. Introgression of the STH1HP46 allele from African rice into modern rice cultivars is a desirable approach for boosting grain yield under salt stress. Collectively, our discoveries not only provide conceptual advances on the mechanisms of salt tolerance and synergetic regulation between salt tolerance and flowering time but also offer potential strategies to overcome the challenges resulted from increasingly serious soil salinization that many crops are facing.


Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/genética , Oryza/genética , Hidrolases , Família
5.
Science ; 376(6599): 1293-1300, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709289

RESUMO

How the plasma membrane senses external heat-stress signals to communicate with chloroplasts to orchestrate thermotolerance remains elusive. We identified a quantitative trait locus, Thermo-tolerance 3 (TT3), consisting of two genes, TT3.1 and TT3.2, that interact together to enhance rice thermotolerance and reduce grain-yield losses caused by heat stress. Upon heat stress, plasma membrane-localized E3 ligase TT3.1 translocates to the endosomes, on which TT3.1 ubiquitinates chloroplast precursor protein TT3.2 for vacuolar degradation, implying that TT3.1 might serve as a potential thermosensor. Lesser accumulated, mature TT3.2 proteins in chloroplasts are essential for protecting thylakoids from heat stress. Our findings not only reveal a TT3.1-TT3.2 genetic module at one locus that transduces heat signals from plasma membrane to chloroplasts but also provide the strategy for breeding highly thermotolerant crops.


Assuntos
Cloroplastos , Oryza , Proteínas de Plantas , Locos de Características Quantitativas , Termotolerância , Cloroplastos/genética , Cloroplastos/fisiologia , Genes de Plantas , Oryza/genética , Oryza/fisiologia , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Termotolerância/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-35682009

RESUMO

Phase angle (PhA), a bioimpedance parameter, is used to assess the nutrition status and body composition of patients. Patients with pancreatic head cancer often present with body composition changes that relate to adverse outcomes. PhA may be useful to evaluate prognosis in these patients, but data are deficient. We aim to explore the effects of PhA on nutrition evaluation and short-term outcome prediction in these patients. This prospective study included 49 participants with pancreatic head cancer who underwent pancreaticoduodenectomy (PD). All participants' nutritional status and postoperative complications were assessed using nutrition assessment tools and the Clavien−Dindo classification method, respectively. Spearman correlation analyses were used to evaluate the association between PhA, nutrition status, and postoperative complications. ROC curves were generated to evaluate the ability of PhA to predict malnutrition and complications and to determine the cutoff value. The PhA values of the nutritional risk group and the malnourished group were significantly lower than those of the well-nourished group (p < 0.05). PhA positively correlated with patients' nutrition status. Nineteen patients had postoperative complications, and the PhA value of the complication group was significantly lower than that of the non-complication group (4.94 vs. 5.47, p = 0.013). ROC curves showed that the cutoff point of PhA to predict malnutrition was 5.45 (AUC: 0.744), and the cutoff point of PhA to predict postoperative complications was 5.35 (AUC: 0.717). Our study indicates that PhA was associated with nutrition status and could be considered a nutrition assessment tool for pancreatic head cancer patients and predict the postoperative complications of these patients who have undergone PD.


Assuntos
Desnutrição , Neoplasias Pancreáticas , Impedância Elétrica , Humanos , Desnutrição/complicações , Desnutrição/epidemiologia , Avaliação Nutricional , Estado Nutricional , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/cirurgia , Complicações Pós-Operatórias/epidemiologia , Estudos Prospectivos , Neoplasias Pancreáticas
7.
Commun Biol ; 4(1): 1171, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620988

RESUMO

Grain size is a key component trait of grain weight and yield. Numbers of quantitative trait loci (QTLs) have been identified in various bioprocesses, but there is still little known about how metabolism-related QTLs influence grain size and yield. The current study report GS3.1, a QTL that regulates rice grain size via metabolic flux allocation between two branches of phenylpropanoid metabolism. GS3.1 encodes a MATE (multidrug and toxic compounds extrusion) transporter that regulates grain size by directing the transport of p-coumaric acid from the p-coumaric acid biosynthetic metabolon to the flavonoid biosynthetic metabolon. A natural allele of GS3.1 was identified from an African rice with enlarged grains, reduced flavonoid content and increased lignin content in the panicles. Notably, the natural allele of GS3.1 caused no alterations in other tissues and did not affect stress tolerance, revealing an ideal candidate for breeding efforts. This study uncovers insights into the regulation of grain size though metabolic-flux distribution. In this way, it supports a strategy of enhancing crop yield without introducing deleterious side effects on stress tolerance mechanisms.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Flavonoides/metabolismo , Lignina/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Oryza/genética , Proteínas de Plantas/genética , Análise do Fluxo Metabólico , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico
8.
Front Surg ; 7: 554910, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304920

RESUMO

Background: Pseudomyxoma peritonei (PMP) is a rare clinical condition with fatal outcomes, which is characterized by the progressive accumulation of mucinous ascites and peritoneal implants. Some studies have reported the effect of PMP biology on patient outcome. The objective of this study was to analyze published articles focusing on the impact of pathology on the prognosis of PMP patients undergoing debulking. Methods: Data from all studies regarding the prognosis of patients, with different pathologies, who underwent debulking surgery were analyzed. We searched PubMed, the Wiley Online Library, Ovid, and the Cochrane Library (through January 2020). Studies were confined to those articles written in English. Five studies were identified, and the differences in 5-year survival rates were analyzed according to the Kaplan-Meier survival curves. The hazard ratios (HRs) of the 5-year survival rates were calculated. Results: The mean and median 5-year survival rates of all patients were 39 and 40%, respectively. The median overall survival was 49.3 months. The mean 5-year survival rates of low-grade PMP was 45.2%. The five studies had sufficient data to calculate HRs from the 5-year survival rates data, and three had HRs lower than 1. The total HRs was 0.54, with a 95% CI between 0.33 and 0.89 (P = 0.01). Conclusions: Among PMP patients receiving debulking surgery who are not able to undergo complete cytoreductive surgery, low-grade biological PMP had a better prognosis than high-grade PMP.

9.
Nat Commun ; 11(1): 2629, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457405

RESUMO

Grain size is an important component trait of grain yield, which is frequently threatened by abiotic stress. However, little is known about how grain yield and abiotic stress tolerance are regulated. Here, we characterize GSA1, a quantitative trait locus (QTL) regulating grain size and abiotic stress tolerance associated with metabolic flux redirection. GSA1 encodes a UDP-glucosyltransferase, which exhibits glucosyltransferase activity toward flavonoids and monolignols. GSA1 regulates grain size by modulating cell proliferation and expansion, which are regulated by flavonoid-mediated auxin levels and related gene expression. GSA1 is required for the redirection of metabolic flux from lignin biosynthesis to flavonoid biosynthesis under abiotic stress and the accumulation of flavonoid glycosides, which protect rice against abiotic stress. GSA1 overexpression results in larger grains and enhanced abiotic stress tolerance. Our findings provide insights into the regulation of grain size and abiotic stress tolerance associated with metabolic flux redirection and a potential means to improve crops.


Assuntos
Adaptação Fisiológica , Grão Comestível/metabolismo , Glucosiltransferases/metabolismo , Oryza/metabolismo , Crescimento Celular , Proliferação de Células , Grão Comestível/citologia , Grão Comestível/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Redes e Vias Metabólicas , Oryza/citologia , Oryza/genética , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...