Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 165: 160-171, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30677614

RESUMO

Multi-drug resistance (MDR) to anticancer drugs is the primary impediment to successful treatment of cancer. Hunting for new compounds with potent anti-MDR activity is an effectual approach to conquer cancer drug resistance. In this work, 33 new sulfur-containing 1,4-naphthoquinone oxime derivatives were prepared and investigated for their cytotoxicity against a panel of tumor cell lines and fibroblast normal cell line. Cell-based assay showed that most of target compounds displayed more potent cytotoxic potency than positive controls. Meanwhile, all of compounds were non-toxic to normal cells. More importantly, the cytotoxic activity of these oxime derivatives toward drug-resistant cancer cell lines was found to be much stronger than that toward drug-susceptible cell lines (anti-drug resistance coefficient (ADRC) > 1). Of these, compound 12 m was identified as the most effective molecule with IC50 values in the range of 0.29 ±â€¯0.01 to 1.33 ±â€¯0.05 µM toward MDR sublines. Further mechanism studies demonstrated that 12 m could inhibit colony formation, cause G1 phase arrest and promote cell apoptosis mediated by augmenting Bax/Bcl-2 ratio of Bel7402/5-FU cells. Our findings provide promising start points for development of sulfur-containing 1,4-naphthoquinone oxime derivatives as potential anti-MDR agents.


Assuntos
Antineoplásicos/síntese química , Resistencia a Medicamentos Antineoplásicos , Naftoquinonas/farmacologia , Oximas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Naftoquinonas/química , Oximas/química , Relação Estrutura-Atividade , Enxofre
2.
Eur J Med Chem ; 143: 166-181, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174813

RESUMO

As a continuation of our research on developing potent and potentially safe antineoplastic agents, a set of forty five sulfur-containing shikonin oxime derivatives were synthesized and evaluated for their in vitro cytotoxic activity against human colon cancer (HCT-15), gastric carcinoma (MGC-803), liver (Bel7402), breast (MCF-7) cancer cells and human skin fibroblast (HSF) cells. All the synthesized compounds exhibited potent cytotoxic activity selectively towards HCT-15 cells and did not display apparent toxicity to the normal HSF cells, some of which were more or comparatively effective to the parent compound against HCT-15, MGC-803 and Bel7402 cells. The most active agent 9m displayed high potency against human cancer cells with IC50 ranging from 0.27 ± 0.02 to 9.23 ± 0.12 µM. The structure-activity relationships (SARs) studies suggested that the nature of substituent group in the side chain is important for antitumor potency in vitro. Additionally, nitric oxide release studies revealed that the amount of nitric oxide generated from these oxime derivatives was relatively low. Furthermore, cellular mechanism investigations indicated that compound 9m could arrest cell cycle at G1 phase and induce a strong apoptotic response in HCT-15 cells. Moreover, western blot studies revealed that compound 9m induced apoptosis through the down-regulation of Bcl-2 and up-regulation of Bax, caspase 3 and 9. For all these reasons, compound 9m hold promising potential as antineoplastic agent.


Assuntos
Antineoplásicos/farmacologia , Naftoquinonas/farmacologia , Oximas/farmacologia , Enxofre/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Naftoquinonas/síntese química , Naftoquinonas/química , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Oximas/síntese química , Oximas/química , Relação Estrutura-Atividade , Enxofre/química , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...