Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 163(5): 1377-1390.e11, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35934064

RESUMO

BACKGROUND & AIMS: The circadian clock orchestrates ∼24-hour oscillations of gastrointestinal epithelial structure and function that drive diurnal rhythms in gut microbiota. Here, we use experimental and computational approaches in intestinal organoids to reveal reciprocal effects of gut microbial metabolites on epithelial timekeeping by an epigenetic mechanism. METHODS: We cultured enteroids in media supplemented with sterile supernatants from the altered Schaedler Flora (ASF), a defined murine microbiota. Circadian oscillations of bioluminescent PER2 and Bmal1 were measured in the presence or absence of individual ASF supernatants. Separately, we applied machine learning to ASF metabolomics to identify phase-shifting metabolites. RESULTS: Sterile filtrates from 3 of 7 ASF species (ASF360 Lactobacillus intestinalis, ASF361 Ligilactobacillus murinus, and ASF502 Clostridium species) induced minimal alterations in circadian rhythms, whereas filtrates from 4 ASF species (ASF356 Clostridium species, ASF492 Eubacterium plexicaudatum, ASF500 Pseudoflavonifactor species, and ASF519 Parabacteroides goldsteinii) induced profound, concentration-dependent phase shifts. Random forest classification identified short-chain fatty acid (SCFA) (butyrate, propionate, acetate, and isovalerate) production as a discriminating feature of ASF "shifters." Experiments with SCFAs confirmed machine learning predictions, with a median phase shift of 6.2 hours in murine enteroids. Pharmacologic or botanical histone deacetylase (HDAC) inhibitors yielded similar findings. Further, mithramycin A, an inhibitor of HDAC inhibition, reduced SCFA-induced phase shifts by 20% (P < .05) and conditional knockout of HDAC3 in enteroids abrogated butyrate effects on Per2 expression. Key findings were reproducible in human Bmal1-luciferase enteroids, colonoids, and Per2-luciferase Caco-2 cells. CONCLUSIONS: Gut microbe-generated SCFAs entrain intestinal epithelial circadian rhythms by an HDACi-dependent mechanism, with critical implications for understanding microbial and circadian network regulation of intestinal epithelial homeostasis.


Assuntos
Ritmo Circadiano , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Ritmo Circadiano/fisiologia , Microbioma Gastrointestinal/fisiologia , Histona Desacetilases , Células CACO-2 , Fatores de Transcrição ARNTL , Propionatos , Ácidos Graxos Voláteis/metabolismo , Butiratos , Inibidores de Histona Desacetilases/farmacologia , Luciferases
2.
Aging (Albany NY) ; 13(20): 23471-23516, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34718232

RESUMO

It is widely thought that individuals age at different rates. A method that measures "physiological age" or physiological aging rate independent of chronological age could therefore help elucidate mechanisms of aging and inform an individual's risk of morbidity and mortality. Here we present machine learning frameworks for inferring individual physiological age from a broad range of biochemical and physiological traits including blood phenotypes (e.g., high-density lipoprotein), cardiovascular functions (e.g., pulse wave velocity) and psychological traits (e.g., neuroticism) as main groups in two population cohorts SardiNIA (~6,100 participants) and InCHIANTI (~1,400 participants). The inferred physiological age was highly correlated with chronological age (R2 > 0.8). We further defined an individual's physiological aging rate (PAR) as the ratio of the predicted physiological age to the chronological age. Notably, PAR was a significant predictor of survival, indicating an effect of aging rate on mortality. Our trait-based PAR was correlated with DNA methylation-based epigenetic aging score (r = 0.6), suggesting that both scores capture a common aging process. PAR was also substantially heritable (h2~0.3), and a subsequent genome-wide association study of PAR identified significant associations with two genetic loci, one of which is implicated in telomerase activity. Our findings support PAR as a proxy for an underlying whole-body aging mechanism. PAR may thus be useful to evaluate the efficacy of treatments that target aging-related deficits and controllable epidemiological factors.


Assuntos
Envelhecimento , Estudo de Associação Genômica Ampla/métodos , Aprendizado de Máquina , Modelos Biológicos , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/fisiologia , Envelhecimento/psicologia , Algoritmos , Metilação de DNA/genética , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Neuroticismo , Fenótipo , Análise de Onda de Pulso , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...