Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(44): e2306177120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871210

RESUMO

Lepidopterans affect crop production worldwide. The use of transgenes encoding insecticidal proteins from Bacillus thuringiensis (Bt) in crop plants is a well-established technology that enhances protection against lepidopteran larvae. Concern about widespread field-evolved resistance to Bt proteins has highlighted an urgent need for new insecticidal proteins with different modes or sites of action. We discovered a new family of insecticidal proteins from ferns. The prototype protein from Pteris species (Order Polypodiales) and variants from two other orders of ferns, Schizaeales and Ophioglossales, were effective against important lepidopteran pests of maize and soybean in diet-based assays. Transgenic maize and soybean plants producing these proteins were more resistant to insect damage than controls. We report here the crystal structure of a variant of the prototype protein to 1.98 Å resolution. Remarkably, despite being derived from plants, the structure resembles the 3-domain Cry proteins from Bt but has only two out of three of their characteristic domains, lacking the C-terminal domain which is typically required for their activities. Two of the fern proteins were effective against strains of fall armyworm that were resistant to Bt 3-domain Cry proteins Cry1Fa or Cry2A.127. This therefore represents a novel family of insecticidal proteins that have the potential to provide future tools for pest control.


Assuntos
Bacillus thuringiensis , Gleiquênias , Inseticidas , Traqueófitas , Animais , Inseticidas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Controle Biológico de Vetores , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Traqueófitas/metabolismo , Zea mays/metabolismo
2.
Nat Commun ; 14(1): 4171, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443175

RESUMO

The broad adoption of transgenic crops has revolutionized agriculture. However, resistance to insecticidal proteins by agricultural pests poses a continuous challenge to maintaining crop productivity and new proteins are urgently needed to replace those utilized for existing transgenic traits. We identified an insecticidal membrane attack complex/perforin (MACPF) protein, Mpf2Ba1, with strong activity against the devastating coleopteran pest western corn rootworm (WCR) and a novel site of action. Using an integrative structural biology approach, we determined monomeric, pre-pore and pore structures, revealing changes between structural states at high resolution. We discovered an assembly inhibition mechanism, a molecular switch that activates pre-pore oligomerization upon gut fluid incubation and solved the highest resolution MACPF pore structure to-date. Our findings demonstrate not only the utility of Mpf2Ba1 in the development of biotechnology solutions for protecting maize from WCR to promote food security, but also uncover previously unknown mechanistic principles of bacterial MACPF assembly.


Assuntos
Besouros , Inseticidas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Zea mays/metabolismo , Besouros/fisiologia , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/metabolismo , Animais Geneticamente Modificados , Perforina/metabolismo , Endotoxinas/metabolismo , Larva/metabolismo , Resistência a Inseticidas
3.
Sci Adv ; 8(43): eabq6589, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306356

RESUMO

Crystalline symmetry is a defining factor of the electronic band topology in solids, where many-body interactions often induce a spontaneous breaking of symmetry. Superconductors lacking an inversion center are among the best systems to study such effects or even to achieve topological superconductivity. Here, we demonstrate that TRuSi materials (with T a transition metal) belong to this class. Their bulk normal states behave as three-dimensional Kramers nodal-line semimetals, characterized by large antisymmetric spin-orbit couplings and by hourglass-like dispersions. Our muon-spin spectroscopy measurements show that certain TRuSi compounds spontaneously break the time-reversal symmetry at the superconducting transition, while unexpectedly showing a fully gapped superconductivity. Their unconventional behavior is consistent with a unitary (s + ip) pairing, reflecting a mixture of spin singlets and spin triplets. By combining an intrinsic time-reversal symmetry-breaking superconductivity with nontrivial electronic bands, TRuSi compounds provide an ideal platform for investigating the rich interplay between unconventional superconductivity and the exotic properties of Kramers nodal-line/hourglass fermions.

4.
Nat Nanotechnol ; 16(8): 869-873, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34168343

RESUMO

Nonlinear responses in transport measurements are linked to material properties not accessible at linear order1 because they follow distinct symmetry requirements2-5. While the linear Hall effect indicates time-reversal symmetry breaking, the second-order nonlinear Hall effect typically requires broken inversion symmetry1. Recent experiments on ultrathin WTe2 demonstrated this connection between crystal structure and nonlinear response6,7. The observed second-order nonlinear Hall effect can probe the Berry curvature dipole, a band geometric property, in non-magnetic materials, just like the anomalous Hall effect probes the Berry curvature in magnetic materials8,9. Theory predicts that another intrinsic band geometric property, the Berry-connection polarizability tensor10, gives rise to higher-order signals, but it has not been probed experimentally. Here, we report a third-order nonlinear Hall effect in thick Td-MoTe2 samples. The third-order signal is found to be the dominant response over both the linear- and second-order ones. Angle-resolved measurements reveal that this feature results from crystal symmetry constraints. Temperature-dependent measurement shows that the third-order Hall response agrees with the Berry-connection polarizability contribution evaluated by first-principles calculations. The third-order nonlinear Hall effect provides a valuable probe for intriguing material properties that are not accessible at lower orders and may be employed for high-order-response electronic devices.

5.
Phys Rev Lett ; 127(27): 277202, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35061417

RESUMO

Response properties that are purely intrinsic to physical systems are of paramount importance in physics research, as they probe fundamental properties of band structures and allow quantitative calculation and comparison with experiment. For anomalous Hall transport in magnets, an intrinsic effect can appear at the second order to the applied electric field. We show that this intrinsic second-order anomalous Hall effect is associated with an intrinsic band geometric property-the dipole moment of Berry-connection polarizability (BCP) in momentum space. The effect has scaling relation and symmetry constraints that are distinct from the previously studied extrinsic contributions. Particularly, in antiferromagnets with PT symmetry, the intrinsic effect dominates. Combined with first-principles calculations, we demonstrate the first quantitative evaluation of the effect in the antiferromagnet Mn_{2}Au. We show that the BCP dipole and the resulting intrinsic second-order conductivity are pronounced around band near degeneracies. Importantly, the intrinsic response exhibits sensitive dependence on the Néel vector orientation with a 2π periodicity, which offers a new route for electric detection of the magnetic order in PT-invariant antiferromagnets.

6.
Nat Commun ; 11(1): 3985, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778652

RESUMO

The interplay between electronic correlations and topological protection may offer a rich avenue for discovering emergent quantum phenomena in condensed matter. However, electronic correlations have so far been little investigated in Weyl semimetals (WSMs) by experiments. Here, we report a combined optical spectroscopy and theoretical calculation study on the strength and effect of electronic correlations in a magnet Co3Sn2S2. The electronic kinetic energy estimated from our optical data is about half of that obtained from single-particle ab initio calculations in the ferromagnetic ground state, which indicates intermediate-strength electronic correlations in this system. Furthermore, comparing the energy and side-slope ratios between the interband-transition peaks at high energies in the experimental and single-particle-calculation-derived optical conductivity spectra with the bandwidth-renormalization factors obtained by many-body calculations enables us to estimate the Coulomb-interaction strength (U âˆ¼ 4 eV) in Co3Sn2S2. Besides, a sharp experimental optical conductivity peak at low energy, which is absent in the single-particle-calculation-derived spectrum but is consistent with the optical conductivity peaks obtained by many-body calculations with U âˆ¼ 4 eV, indicates that an electronic band connecting the two Weyl cones is flattened by electronic correlations and emerges near the Fermi energy in Co3Sn2S2. Our work paves the way for exploring flat-band-generated quantum phenomena in WSMs.

7.
Phys Rev Lett ; 125(5): 056402, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32794859

RESUMO

We propose a universal practical approach to realize magnetic second-order topological insulator (SOTI) materials, based on properly breaking the time reversal symmetry in conventional (first-order) topological insulators. The approach works for both three dimensions (3D) and two dimensions (2D), and is particularly suitable for 2D, where it can be achieved by coupling a quantum spin Hall insulator with a magnetic substrate. Using first-principles calculations, we predict bismuthene on EuO(111) surface as the first realistic system for a two-dimensional magnetic SOTI. We explicitly demonstrate the existence of the protected corner states. Benefitting from the large spin-orbit coupling and sizable magnetic proximity effect, these corner states are located in a boundary gap ∼83 meV, and hence can be readily probed in experiment. By controlling the magnetic phase transition, a topological phase transition between a first-order TI and a SOTI can be simultaneously achieved in the system. The effect of symmetry breaking, the connection with filling anomaly, and the experimental detection are discussed.

8.
Insect Sci ; 27(4): 780-790, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31209955

RESUMO

The fall armyworm, Spodoptera frugiperda, is a species native to the Americas and has spread to many countries in Africa and Asia in recent years. Proactive actions for potential invasion of S. frugiperda to China coordinated by government agencies and agricultural extension systems resulted in timely detection in January 2019 in Yunnan province neighboring onto Myanmar. The extensive monitoring in southern provinces of China since February 2019 resulted in dynamic tracking of S. frugiperda spreading to 13 provincial regions in China within 4 months by May 10, 2019, which is crucial for timely management actions in the fields. The first detections of S. frugiperda (corn strain) in China were confirmed using cytochrome oxidase subunit 1 (CO1) and triosephosphate isomerase (Tpi) genes molecular marker method. In addition to S. frugiperda, larvae of three other noctuid species with similar morphological appearance (S. litura, S. exigua and Mythimna separata) can occur simultaneously and cause similar damage in cornfields in southern China. Thus, we can use both morphological and molecular marker methods to compare larval stages of four noctuid species. Further, we discuss the risk of potential spread of invasive S. frugiperda to other regions and impact on corn production in China.


Assuntos
Distribuição Animal , Polimorfismo Genético , Spodoptera/genética , Animais , China , Complexo IV da Cadeia de Transporte de Elétrons/análise , Proteínas de Insetos/análise , Espécies Introduzidas , Larva/anatomia & histologia , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Especificidade da Espécie , Spodoptera/anatomia & histologia , Spodoptera/enzimologia , Spodoptera/crescimento & desenvolvimento , Triose-Fosfato Isomerase/análise , Zea mays
9.
Adv Mater ; 31(44): e1903498, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31531912

RESUMO

A transition metal diphosphide, WP2 , is a candidate for type-II Weyl semimetals (WSMs) in which spatial inversion symmetry is broken and Lorentz invariance is violated. As one of the prerequisites for the presence of the WSM state in WP2 , spatial inversion symmetry breaking in this compound has rarely been investigated. Furthermore, the anisotropy of the WP2 electrical properties and whether its electrical anisotropy can be tuned remain elusive. Angle-resolved polarized Raman spectroscopy, electrical transport, optical spectroscopy, and first-principle studies of WP2 are reported. The energies of the observed Raman-active phonons and the angle dependences of the detected phonon intensities are consistent with results obtained by first-principle calculations and analysis of the proposed crystal symmetry without spatial inversion, showing that spatial inversion symmetry is broken in WP2 . Moreover, the measured ratio (Rc /Ra ) between the crystalline c-axis and a-axis electrical resistivities exhibits a weak dependence on temperature (T) in the temperature range from 100 to 250 K, but increases abruptly at T ≤ 100 K, and then reaches the value of ≈8.0 at T = 10 K, which is by far the strongest in-plane electrical resistivity anisotropy among the reported type-II WSM candidates with comparable carrier concentrations. Optical spectroscopy study, together with the first-principle calculations on the electronic band structure, reveals that the abrupt enhancement of the electrical resistivity anisotropy at T ≤ 100 K mainly arises from a sharp increase in the scattering rate anisotropy at low temperatures. More interestingly, the Rc /Ra of WP2 at T = 10 K can be tuned from 8.0 to 10.6 as the magnetic field increases from 0 to 9 T. The so-far-strongest and magnetic-field-tunable electrical resistivity anisotropy found in WP2 can serve as a degree of freedom for tuning the electrical properties of type-II WSMs, which paves the way for the development of novel electronic applications based on type-II WSMs.

10.
Sci Rep ; 8(1): 17805, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30546034

RESUMO

The western corn rootworm (WCR) Diabrotica virgifera virgifera causes substantial damage in corn. Genetically modified (GM) plants expressing some Bacillus thuringiensis (Bt) insecticidal Cry proteins efficiently controlled this pest. However, changes in WCR susceptibility to these Bt traits have evolved and identification of insecticidal proteins with different modes of action against WCR is necessary. We show here for the first time that Cyt1Aa from Bt exhibits toxicity against WCR besides to the dipteran Aedes aegypti larvae. Cyt1Aa is a pore-forming toxin that shows no cross-resistance with mosquitocidal Cry toxins. We characterized different mutations in helix α-A from Cyt1Aa. Two mutants (A61C and A59C) exhibited reduced or absent hemolytic activity but retained toxicity to A. aegypti larvae, suggesting that insecticidal and hemolytic activities of Cyt1Aa are independent activities. These mutants were still able to form oligomers in synthetic lipid vesicles and to synergize Cry11Aa toxicity. Remarkably, mutant A61C showed a five-fold increase insecticidal activity against mosquito and almost 11-fold higher activity against WCR. Cyt1Aa A61C mutant was as potent in killing WCR that were selected for resistance to mCry3A as it was against unselected WCR indicating that this toxin could be a useful resistance management option in the control of WCR.


Assuntos
Bacillus thuringiensis , Proteínas de Bactérias , Besouros/crescimento & desenvolvimento , Endotoxinas , Proteínas Hemolisinas , Mutação de Sentido Incorreto , Controle Biológico de Vetores , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Endotoxinas/genética , Endotoxinas/toxicidade , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Inseticidas/toxicidade
11.
J Phys Condens Matter ; 31(2): 025601, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30524047

RESUMO

We develop a fast impurity solver which is based on the combination of Hubbard-I approximation and hybridization expansion continuous-time quantum Monte Carlo algorithm. This solver inherits the advantages of both algorithms. In order to demonstrate the power and usefulness of this solver, we use it to study the magnetic phase transitions of single-band and two-band Hubbard models in the framework of single-site dynamical mean-field theory. The calculated results agree well with those obtained by hybridization expansion quantum impurity solver. It is suggested that this solver is very suitable to solve the multi-orbital quantum impurity models efficiently and can be used to study more realistic systems with magnetic long-range order in the future.

12.
Phys Chem Chem Phys ; 20(17): 12138-12148, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29682637

RESUMO

The quantum anomalous Hall (QAH) effect is superior to the quantum spin Hall (QSH) effect, which can avoid the inelastic scattering of two edge electrons located on one side of a topological nontrivial material, and thus it has attracted both theoretical and experimental interest. Here, we systematically investigate the lattice structures, and electronic and magnetic properties of hydrogenated arsenene decorated with certain transition metals (Cr, Mo and Cu) based on density-functional theory. A unique QAH effect in Mo@AsH is predicted, whose Chern number (C = 1) indicates only one chiral edge channel located on its one side. Then, we prove that this QAH effect realization is closely related with band inversion, which is the competitive result between its spin-orbit coupling (SOC) strength and exchange field. The quantum state of Mo@AsH can also be tuned by an external strain, similar to SOC, and it is noted that its increased topological gap of about 35 meV under 5.0% tensile strain, is large enough to realize the QAH effect at room-temperature. Additionally, the quantum valley Hall effect in Cu@AsH contributed by the inequality of AB sublattices is also found. Our results reveal the physical mechanism to realize the QAH effect in TM@AsH and provide a platform for electrically controllable topological states, which are highly desirable for nanoelectronics and spintronics.

13.
Plant Biotechnol J ; 16(2): 649-659, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28796437

RESUMO

The coleopteran insect western corn rootworm (WCR, Diabrotica virgifera virgifera) is an economically important pest in North America and Europe. Transgenic corn plants producing Bacillus thuringiensis (Bt) insecticidal proteins have been useful against this devastating pest, but evolution of resistance has reduced their efficacy. Here, we report the discovery of a novel insecticidal protein, PIP-47Aa, from an isolate of Pseudomonas mosselii. PIP-47Aa sequence shows no shared motifs, domains or signatures with other known proteins. Recombinant PIP-47Aa kills WCR, two other corn rootworm pests (Diabrotica barberi and Diabrotica undecimpunctata howardi) and two other beetle species (Diabrotica speciosa and Phyllotreta cruciferae), but it was not toxic to the spotted lady beetle (Coleomegilla maculata) or seven species of Lepidoptera and Hemiptera. Transgenic corn plants expressing PIP-47Aa show significant protection from root damage by WCR. PIP-47Aa kills a WCR strain resistant to mCry3A and does not share rootworm midgut binding sites with mCry3A or AfIP-1A/1B from Alcaligenes that acts like Cry34Ab1/Cry35Ab1. Our results indicate that PIP-47Aa is a novel insecticidal protein for controlling the corn rootworm pests.


Assuntos
Bacillus thuringiensis/metabolismo , Zea mays/metabolismo , Zea mays/microbiologia , Animais , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia
14.
Sci Rep ; 7(1): 3063, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596570

RESUMO

Crops expressing Bacillus thuringiensis (Bt)-derived insecticidal protein genes have been commercially available for over 15 years and are providing significant value to growers. However, there remains the need for alternative insecticidal actives due to emerging insect resistance to certain Bt proteins. A screen of bacterial strains led to the discovery of a two-component insecticidal protein named AfIP-1A/1B from an Alcaligenes faecalis strain. This protein shows selectivity against coleopteran insects including western corn rootworm (WCR). Transgenic maize plants expressing AfIP-1A/1B demonstrate strong protection from rootworm injury. Surprisingly, although little sequence similarity exists to known insecticidal proteins, efficacy tests using WCR populations resistant to two different Cry proteins show that AfIP-1A/1B and mCry3A differ in their mode of action while AfIP-1A/1B and the binary Cry34Ab1/Cry35Ab1 protein share a similar mode. These findings are supported by results of competitive binding assays and the similarity of the x-ray structure of AfIP-1A to Cry34Ab1. Our work indicates that insecticidal proteins obtained from a non-Bt bacterial source can be useful for developing genetically modified crops and can function similarly to familiar proteins from Bt.


Assuntos
Alcaligenes/genética , Proteínas de Bactérias/genética , Agentes de Controle Biológico/toxicidade , Besouros/efeitos dos fármacos , Endotoxinas/genética , Proteínas Hemolisinas/genética , Alcaligenes/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Agentes de Controle Biológico/metabolismo , Clonagem Molecular , Besouros/patogenicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade
15.
Science ; 354(6312): 634-637, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27708055

RESUMO

The coleopteran insect western corn rootworm (WCR) (Diabrotica virgifera virgifera LeConte) is a devastating crop pest in North America and Europe. Although crop plants that produce Bacillus thuringiensis (Bt) proteins can limit insect infestation, some insect populations have evolved resistance to Bt proteins. Here we describe an insecticidal protein, designated IPD072Aa, that is isolated from Pseudomonas chlororaphis. Transgenic corn plants expressing IPD072Aa show protection from WCR insect injury under field conditions. IPD072Aa leaves several lepidopteran and hemipteran insect species unaffected but is effective in killing WCR larvae that are resistant to Bt proteins produced by currently available transgenic corn. IPD072Aa can be used to protect corn crops against WCRs.


Assuntos
Proteínas de Bactérias/metabolismo , Besouros/metabolismo , Resistência a Inseticidas , Inseticidas/metabolismo , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas/parasitologia , Pseudomonas chlororaphis/metabolismo , Zea mays/parasitologia , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Besouros/genética , Produtos Agrícolas/genética , Produtos Agrícolas/parasitologia , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Filogenia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Zea mays/genética
16.
Sci Rep ; 6: 30542, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27464714

RESUMO

RNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively. These genes encode membrane proteins associated with smooth septate junctions (SSJ) which are required for intestinal barrier function. Based on bioinformatics analysis, dvssj1 appears to be an arthropod-specific gene. Diet based insect feeding assays using double-stranded RNA (dsRNA) targeting dvssj1 and dvssj2 demonstrate targeted mRNA suppression, larval growth inhibition, and mortality. In RNAi treated WCR, injury to the midgut was manifested by "blebbing" of the midgut epithelium into the gut lumen. Ultrastructural examination of midgut epithelial cells revealed apoptosis and regenerative activities. Transgenic plants expressing dsRNA targeting dvssj1 show insecticidal activity and significant plant protection from WCR damage. The data indicate that dvssj1 and dvssj2 are effective gene targets for the control of WCR using RNAi technology, by apparent suppression of production of their respective smooth septate junction membrane proteins located within the intestinal lining, leading to growth inhibition and mortality.


Assuntos
Besouros/genética , Proteínas de Insetos/genética , Controle Biológico de Vetores/métodos , Interferência de RNA , Zea mays/genética , Animais , Trato Gastrointestinal/fisiologia , Trato Gastrointestinal/ultraestrutura , Regulação da Expressão Gênica , Larva/crescimento & desenvolvimento , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , RNA de Cadeia Dupla
17.
J Econ Entomol ; 109(3): 1369-1377, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27016600

RESUMO

Several Bt maize events expressing various insecticidal Cry protein genes have been commercialized for management of western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae). We used high efficacy (>99.7%) experimental maize events that express mCry3A for selections under laboratory conditions to develop a western corn rootworm colony resistant to mCry3A at higher levels than published results. The resistance ratio (RR) to mCry3A was >97-fold based on LC 50 values in diet-based bioassays after six generations of selections when compared to that of an unselected Control colony. Using a sublethal seedling assay (SSA) method, we confirmed that the colony had no cross-resistance to maize event DAS-59122-7, which expresses Cry34/35Ab. Reciprocal crosses between the mCry3A-resistant colony and the susceptible colony were performed to test the inheritance of resistance. Larval survival and development evaluated by the SSA method indicated that resistance to mCry3A was inherited autosomally and was incompletely recessive (h = 0.23-0.25). Specific binding of mCry3A to brush border membrane vesicles of midgut tissue revealed reduced binding in the resistant colony when compared to binding in the susceptible colony. This is the first report where resistance in western corn rootworm has been shown to involve reduced binding of a Cry3-class protein in midgut tissue.

18.
Sci Rep ; 5: 13036, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26267653

RESUMO

The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

19.
Appl Environ Microbiol ; 81(5): 1884-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25480752

RESUMO

Two populations of Trichoplusia ni that had developed resistance to Bacillus thuringiensis sprays (Bt sprays) in commercial greenhouse vegetable production were tested for resistance to Bt cotton (BollGard II) plants expressing pyramided Cry1Ac and Cry2Ab. The T. ni colonies resistant to Bacillus thuringiensis serovar kurstaki formulations were not only resistant to the Bt toxin Cry1Ac, as previously reported, but also had a high frequency of Cry2Ab-resistant alleles, exhibiting ca. 20% survival on BollGard II foliage. BollGard II-resistant T. ni strains were established by selection with BollGard II foliage to further remove Cry2Ab-sensitive alleles in the T. ni populations. The BollGard II-resistant strains showed incomplete resistance to BollGard II, with adjusted survival values of 0.50 to 0.78 after 7 days. The resistance to the dual-toxin cotton plants was conferred by two genetically independent resistance mechanisms: one to Cry1Ac and one to Cry2Ab. The 50% lethal concentration of Cry2Ab for the resistant strain was at least 1,467-fold that for the susceptible T. ni strain. The resistance to Cry2Ab in resistant T. ni was an autosomally inherited, incompletely recessive monogenic trait. Results from this study indicate that insect populations under selection by Bt sprays in agriculture can be resistant to multiple Bt toxins and may potentially confer resistance to multitoxin Bt crops.


Assuntos
Proteínas de Bactérias/toxicidade , Resistência a Medicamentos , Endotoxinas/toxicidade , Gossypium/parasitologia , Proteínas Hemolisinas/toxicidade , Lepidópteros/efeitos dos fármacos , Lepidópteros/fisiologia , Alelos , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas , Seleção Genética , Análise de Sobrevida
20.
Phys Rev Lett ; 112(1): 016403, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24483913

RESUMO

The electronic structures of two mixed valence insulators YbB6 and YbB12 are studied by using the local density approximation supplemented with the Gutzwiller method and dynamic mean field theory. YbB6 is found to be a moderately correlated Z2 topological insulator, similar to SmB6 but having much larger bulk band gap. Notably, YbB12 is revealed to be in a new novel quantum state, strongly correlated topological crystalline Kondo insulator, which is characterized by its nonzero mirror Chern number. The surface calculations find an odd (three) and an even (four) number of Dirac cones for YbB6 and YbB12, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...