Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Integr Neurosci ; 23(6): 116, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38940089

RESUMO

BACKGROUND: The effects of heat acclimation (HA) on the hypothalamus after exertional heatstroke (EHS) and the specific mechanism have not been fully elucidated, and this study aimed to address these questions. METHODS: In the present study, rats were randomly assigned to the control, EHS, HA, or HA + EHS groups (n = 9). Hematoxylin and eosin (H&E) staining was used to examine pathology. Tandem mass tag (TMT)-based proteomic analysis was utilized to explore the impact of HA on the protein expression profile of the hypothalamus after EHS. Bioinformatics analysis was used to predict the functions of the differentially expressed proteins. The differential proteins were validated by western blotting. An enzyme-linked immunosorbent assay was used to measure the expression levels of inflammatory cytokines in the serum. RESULTS: The H&E staining (n = 5) results revealed that there were less structural changes in hypothalamus in the HA + EHS group compared with the EHS group. Proteomic analysis (n = 4) revealed that proinflammatory proteins such as argininosuccinate synthetase (ASS1), high mobility group protein B2 (HMGB2) and vimentin were evidently downregulated in the HA + EHS group. The levels of interleukin (IL)-1ß, IL-1, and IL-8 were decreased in the serum samples (n = 3) from HA + EHS rats. CONCLUSIONS: HA may alleviate hypothalamic damage caused by heat attack by inhibiting inflammatory activities, and ASS1, HMGB2 and vimentin could be candidate factors involved in the exact mechanism.


Assuntos
Golpe de Calor , Hipotálamo , Proteômica , Ratos Sprague-Dawley , Animais , Hipotálamo/metabolismo , Golpe de Calor/metabolismo , Ratos , Masculino , Esforço Físico/fisiologia , Modelos Animais de Doenças
2.
Angew Chem Int Ed Engl ; 63(29): e202405593, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38716660

RESUMO

For zinc-metal batteries, the instable chemistry at Zn/electrolyte interphasial region results in severe hydrogen evolution reaction (HER) and dendrite growth, significantly impairing Zn anode reversibility. Moreover, an often-overlooked aspect is this instability can be further exacerbated by the interaction with dissolved cathode species in full batteries. Here, inspired by sustained-release drug technology, an indium-chelated resin protective layer (Chelex-In), incorporating a sustained-release mechanism for indium, is developed on Zn surface, stabilizing the anode/electrolyte interphase to ensure reversible Zn plating/stripping performance throughout the entire lifespan of Zn//V2O5 batteries. The sustained-release indium onto Zn electrode promotes a persistent anticatalytic effect against HER and fosters uniform heterogeneous Zn nucleation. Meanwhile, on the electrolyte side, the residual resin matrix with immobilized iminodiacetates anions can also repel detrimental anions (SO4 2- and polyoxovanadate ions dissolved from V2O5 cathode) outside the electric double layer. This dual synergetic regulation on both electrode and electrolyte sides culminates a more stable interphasial environment, effectively enhancing Zn anode reversibility in practical high-areal-capacity full battery systems. Consequently, the bio-inspired Chelex-In protective layer enables an ultralong lifespan of Zn anode over 2800 h, which is also successfully demonstrated in ultrahigh areal capacity Zn//V2O5 full batteries (4.79 mAh cm-2).

3.
ACS Appl Mater Interfaces ; 16(13): 16820-16829, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527957

RESUMO

Silicon is expected to be used as a high theoretical capacity anode material in lithium-ion batteries with high energy densities. However, the huge volume change incurred when silicon de-embeds lithium ions, leading to destruction of the electrode structure and a rapid reduction in battery capacity. Although binders play a key role in maintaining the stability of the electrode structure, commonly used binders cannot withstand the large volume expansion of the silicon. To alleviate this problem, we propose a PGC cross-linking reconfiguration binder based on poly(acrylic acid) (PAA), gelatin (GN), and ß-cyclodextrin (ß-CD). Within PGC, PAA supports the main chain and provides a large number of carboxyl groups (-COOH), GN provides rich carboxyl and amide groups that can form a cross-linking network with PAA, and ß-CD offers rich hydroxyl groups and a cone-shaped hollow ring structure that can alleviate stress accumulation in the polymer chain by forming a new dynamic cross-linking coordination conformation during stretching. In the half cell, the silicon negative prepared by the PGC binder exhibited a high specific capacity and capacity maintenance ratio, and the specific capacity of the silicon negative electrode prepared by the PGC binder is still 1809 mAh g-1 and the capacity maintenance ratio is 73.76% following 200 cycles at 2 A g-1 current density, indicating that PGC sufficiently maintains the silicon negative structure during the battery cycle. The PGC binder has a simple preparation method and good capacity retention ability, making it a potential reference for the further development of silicon negative electrodes.

4.
Phys Chem Chem Phys ; 25(43): 29894-29904, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37901964

RESUMO

With the improved lithium-ion transference number near unity, the low conductivity of single lithium-ion conducting solid polymer electrolytes (SLIC-SPEs) still hinders their application in high-rate batteries. Though some empirical conclusions on the conducting mechanism of SLIC-SPEs have been obtained, a more comprehensive study on the quantitative relationship between the molecular structure factors and ionic conduction performance is expected. In this study, a model structure that contains adjustable main chain and anion groups in the polyethylene oxide (PEO) matrix was used to clarify the influence of molecular structural factors on ionic conductivity and electrochemical stability of SLIC-SPEs. The anionic group was further disassembled into the intermediate group and end group while the main chain structure was distinguished into different degrees of polymerization and various lengths of the spacers between anions. Therefore, a well-defined molecular structure was employed to describe its relationship with ionic conductivity. In addition, the dissociation degree of salts and mobility of ions changing with the molecular structure were also discussed to explore the fundamental causes of conductivity. It can be concluded that the anion group affects the conductivity mainly via the dissociation degree, while the main chain structure impacts the conductivity by both dissociation degree and mobility.

5.
J Opt Soc Am A Opt Image Sci Vis ; 40(7): 1276-1288, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706727

RESUMO

To obtain high-visual-quality underwater images by image post-processing, many underwater image restoration and enhancement methods have been proposed. Underwater image quality assessment (UIQA) methods have been developed to compare these restoration and enhancement methods. This paper comprehensively summarizes the subjective and objective UIQA methods, metrics, and datasets. Experiments are conducted on two underwater image datasets to analyze the performance of several typical UIQA metrics. Suggestions for further research directions are put forward as well.

6.
ACS Nano ; 17(16): 15492-15503, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37535393

RESUMO

Aqueous zinc-iodine (Zn-I2) batteries have attracted extensive attention due to their merits of inherent safety, wide natural abundance, and low cost. However, their application is seriously hindered by the irreversible capacity loss resulting from both anode and cathode. Herein, an anion concentrated electrolyte (ACE) membrane is designed to manipulate the Zn2+ ion flux on the zinc anode side and restrain the shuttle effect of polyiodide ions on the I2 cathode side simultaneously to realize long-lifetime separator-free Zn-I2 batteries. The ACE membrane with abundant sulfonic acid groups possesses a multifunctional amalgamation of good mechanical strength, guided Zn2+ ion transport, and effective charge repulsion of polyiodide ions. Moreover, rich ether oxygen, carbonyl, and S-O bonds in anionic polymer chains will form hydrogen bonds with water to reduce the proportion of free water in the ACE membrane, inhibiting the water-induced interfacial side reactions of the Zn metal anode. Besides, DFT calculations and in-situ UV-vis and in situ Raman results reveal that the shuttle effect of polyiodide ions is also significantly suppressed. Therefore, the ACE membrane enables a long lifespan of Zn anodes (3700 h) and excellent cycling stability of Zn-I2 batteries (10000 cycles), thus establishing a substantial base for their practical applications.

7.
ACS Appl Mater Interfaces ; 15(25): 31020-31031, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37337885

RESUMO

Traditional lithium batteries cannot work well at low temperatures due to the sluggish desolvation process, which limits their applications in low-temperature fields. Among various previously reported approaches, solvation regulation of electrolytes is of great importance to overcome this obstacle. In this work, a tetrahydrofuran (THF)-based localized high-concentration electrolyte is reported, which possesses the advantages of a unique solvation structure and improved mobility, enabling a Li/lithium manganate (LMO) battery to cycle stably at room temperature (retains 85.9% after 300 cycles) and to work at a high rate (retains 69.0% at a 10C rate). Apart from that, this electrolyte demonstrates superior low-temperature performance, delivering over 70% capacity at -70 °C and maintaining 72.5 mAh g-1 (≈77.1%) capacity for 200 cycles at a 1C rate at -40 °C. Also, even when the rate increases to 5C, the battery could still operate well at -40 °C. This work demonstrates that solvation regulation has a significant impact on the kinetics of cells at low temperatures and provides a design method for future electrolyte design.

8.
Brain Res ; 1811: 148393, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37150340

RESUMO

BACKGROUND: Exertional heatstroke (EHS) is an emergency with a high mortality rate, characterized by central nervous system dysfunctions. This study aims to establish a Heat acclimation/acclimatization (HA) rat model in locomotion to recapitulate the physical state of human in severe environment of high temperature and humidity, and investigate the mechanism of organism protection in HA. (2) Methods: Wistar rats were exposed to 36 °C and ran 2 h/d for 21 days, acquired thermal tolerance test was conducted to assess the thermotolerance and exercise ability. Core temperature and consumption of water and food were observed. Expression of HSP70 and HSP90 of different tissues were determined by WB. Pathological structure of brain tissue was detected with HE staining. Proteomics was used to identify the differently expressed proteins in cerebral cortex of different groups. And key molecules were identified by RT-PCR and WB. (3) Results: HA rats displayed stronger thermotolerance and exercised ability on acquired thermal tolerance test. Brain water content of HA + EHS group reduced compared with EHS group. HE staining revealed slighter brain injuries of HA + EHS group than that of EHS. Proteomics focused on cell death-related pathways and key molecules Aquaporin 4 (AQP4) related to cell edema. Identification results showed HA increased AQP4, Bcl-xl, ratio of p-Akt/AKT and Bcl-xl/Bax, down-regulated Cleaved Caspase-3. (4) Conclusions: This HA model can ameliorate brain injury of EHS by reducing cerebral edema and cell apoptosis, offering experimental evidence for EHS prophylaxis.


Assuntos
Lesões Encefálicas , Golpe de Calor , Humanos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Resposta ao Choque Térmico , Aclimatação/fisiologia , Exercício Físico/fisiologia
9.
Angew Chem Int Ed Engl ; 62(22): e202300418, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36941210

RESUMO

Zn-I2 batteries stand out in the family of aqueous Zn-metal batteries (AZMBs) due to their low-cost and immanent safety. However, Zn dendrite growth, polyiodide shuttle effect and sluggish I2 redox kinetics result in dramatically capacity decay of Zn-I2 batteries. Herein, a Janus separator composed of functional layers on anode/cathode sides is designed to resolve these issues simultaneously. The cathode layer of Fe nanoparticles-decorated single-wall carbon nanotubes can effectively anchor polyiodide and catalyze the redox kinetics of iodine species, while the anode layer of cation exchange resin rich in -SO3 - groups is beneficial to attract Zn2+ ions and repel detrimental SO4 2- /polyiodide, improving the stability of cathode/anode interfaces synergistically. Consequently, the Janus separator endows outstanding cycling stability of symmetrical cells and high-areal-capacity Zn-I2 batteries with a lifespan over 2500 h and a high-areal capacity of 3.6 mAh cm-2 .

10.
Nanomicro Lett ; 15(1): 74, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36976386

RESUMO

With excellent energy densities and highly safe performance, solid-state lithium batteries (SSLBs) have been hailed as promising energy storage devices. Solid-state electrolyte is the core component of SSLBs and plays an essential role in the safety and electrochemical performance of the cells. Composite polymer electrolytes (CPEs) are considered as one of the most promising candidates among all solid-state electrolytes due to their excellent comprehensive performance. In this review, we briefly introduce the components of CPEs, such as the polymer matrix and the species of fillers, as well as the integration of fillers in the polymers. In particular, we focus on the two major obstacles that affect the development of CPEs: the low ionic conductivity of the electrolyte and high interfacial impedance. We provide insight into the factors influencing ionic conductivity, in terms of macroscopic and microscopic aspects, including the aggregated structure of the polymer, ion migration rate and carrier concentration. In addition, we also discuss the electrode-electrolyte interface and summarize methods for improving this interface. It is expected that this review will provide feasible solutions for modifying CPEs through further understanding of the ion conduction mechanism in CPEs and for improving the compatibility of the electrode-electrolyte interface.

11.
Polymers (Basel) ; 15(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36850275

RESUMO

Lithium-sulfur batteries (LSBs) are recognized as one of the second-generation electrochemical energy storage systems with the most potential due to their high theoretical specific capacity of the sulfur cathode (1675 mAhg-1), abundant elemental sulfur energy storage, low price, and green friendliness. However, the shuttle effect of polysulfides results in the passivation of the lithium metal anode, resulting in a decrease in battery capacity, Coulombic efficiency, and cycle stability, which seriously restricts the commercialization of LSBs. Starting from the separator layer before the positive sulfur cathode and lithium metal anode, introducing a barrier layer for the shuttle of polysulfides is considered an extremely effective research strategy. These research strategies are effective in alleviating the shuttle of polysulfide ions, improving the utilization of active materials, enhancing the battery cycle stability, and prolonging the cycle life. This paper reviews the research progress of the separator functionalization in LSBs in recent years and the research trend of separator functionalization in the future is predicted.

12.
Adv Mater ; 35(15): e2208630, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739482

RESUMO

Aqueous zinc-metal batteries have attracted extensive attention due to their outstanding merits of high safety and low cost. However, the intrinsic thermodynamic instability of zinc in aqueous electrolyte inevitably results in hydrogen evolution, and the consequent generation of OH- at the interface will dramatically exacerbate the formation of dead zinc and dendrites. Herein, a dynamically interfacial pH-buffering strategy implemented by N-methylimidazole (NMI) additive is proposed to remove the detrimental OH- at zinc/electrolyte interface in real-time, thus eliminating the accumulation of by-products fundamentally. Electrochemical quartz crystal microbalance and molecular dynamics simulation results reveal the existence of an interfacial absorption layer assembled by NMI and protonated NMI (NMIH+ ), which acts as an ion pump for replenishing the interface with protons constantly. Moreover, an in situ interfacial pH detection method with micro-sized spatial resolution based on the ultra-microelectrode technology is developed to probe the pH evolution in diffusion layer, confirming the stabilized interfacial chemical environment in NMI-containing electrolyte. Accordingly, with the existence of NMI, an excellent cumulative plating capacity of 4.2 Ah cm-2 and ultrahigh Coulombic efficiency of 99.74% are realized for zinc electrodes. Meanwhile, the NMI/NMIH+ buffer additive can accelerate the dissolution/deposition process of MnO2 /Mn2+ on the cathode, leading to enhanced cycling capacity.

13.
ACS Appl Mater Interfaces ; 14(46): 51931-51940, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36373960

RESUMO

Lithium metal batteries (LMBs) are regarded as one of the most promising next-generation energy storage devices due to their high energy density. However, the conversion of LMBs from laboratory to factory is hindered by the formation of lithium dendrites and volume change during lithium stripping and deposition processes. In this work, a volume-responsive separator with core/shell structure thermoplastic polyurethane (TPU)/polyvinylidene fluoride (PVDF) fibers and SiO2 coating layers is designed to restrict dendrite growth. The TPU/PVDF-SiO2 separator can accommodate the volume change like an artificial lung and keep intimate contact with the electrodes, which leads to the formation of a uniform and high-density solid-electrolyte interphase. Meanwhile, the separator can regulate the transport channels and diffusion coefficients (D) of lithium ions with the change of porosity from both experimental and ab initio molecular dynamic analysis. The Li symmetric cells assembled with the TPU/PVDF-SiO2 can run for 1000 h at the current of 1.0 mA cm-2 without a short circuit. Moreover, the low melting point of PVDF can shut the ionic conduction down at 170 °C, guaranteeing the thermal safety of the batteries. With the above advantages, the TPU/PVDF-SiO2 separator presents great potential to promote the commercial and industrial application of LMBs.

14.
ACS Appl Mater Interfaces ; 14(42): 47605-47615, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36227800

RESUMO

The development of high-voltage Mg metal batteries is hampered by the incompatibility between a Mg metal anode and conventional electrolyte, leading to a high overpotential for Mg plating/stripping processes. In this work, we tailored a hybrid functional layer consisting of Bi/MgCl2/polytetrahydrofuran (PTHF) by an in situ THF polyreaction during the reaction of the Mg anode with BiCl3 solution. The introduction of PTHF inhibits the growth of Bi particles and fills the layer interstice with MgCl2-containing PTHF, improving the structural integrity of the functional layer and insulation between the electrolyte and Mg anode. As a result, compared to a simply modified Bi/MgCl2 layer, the Bi/MgCl2/PTHF functional layer exhibits a lower polarization voltage of 0.25 V and longer cycling life of more than 2000 h at 0.1 mA cm-2. Mechanism analysis shows that Mg is plated on the surface of Bi particles within the layer. The Mo6S8/Mg full battery with the hybrid functional layer achieved a low voltage hysteresis of ∼0.25 V and long cycling life over 500 cycles at 50 mA g-1. This work provides a facile and effective hybrid functional layer strategy to realize Mg metal batteries in conventional electrolytes.

15.
Sensors (Basel) ; 22(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015740

RESUMO

The efficient and accurate prediction of urban travel demand, which is a hot topic in intelligent transportation research, is challenging due to its complicated spatial-temporal dependencies, dynamic nature, and uneven distribution. Most existing forecasting methods merely considered the static spatial dependencies while ignoring the influence of the diversity of dynamic demand patterns and/or uneven distribution. In this paper, we propose a traffic demand forecasting framework of a hybrid dynamic graph convolutional network (HDGCN) model to deeply capture the characteristics of urban travel demand and improve prediction accuracy. In HDGCN, traffic flow similarity graphs are designed according to the dynamic nature of travel demand, and a dynamic graph sequence is generated according to time sequence. Then, the dynamic graph convolution module and the standard graph convolution module are introduced to extract the spatial features from dynamic graphs and static graphs, respectively. Finally, the spatial features of the two components are fused and combined with the gated recurrent unit (GRU) to learn the temporal features. The efficiency and accuracy of the HDGCN model in predicting urban taxi travel demand are verified by using the taxi data from Manhattan, New York City. The modeling and comparison results demonstrate that the HDGCN model can achieve stable and effective prediction for taxi travel demand compared with the state-of-the-art baseline models. The proposed model could be used for the real-time, accurate, and efficient travel demand prediction of urban taxi and other urban transportation systems.


Assuntos
Automóveis , Meios de Transporte , Previsões , Análise Espacial , Meios de Transporte/métodos , Viagem
16.
ACS Appl Mater Interfaces ; 14(35): 39927-39938, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36001325

RESUMO

Combining the Ni-rich layered cathode (Ni ≥ 80%) with high operating voltage is considered as a feasible solution to achieve high-energy lithium-ion batteries (LIBs). However, the working voltage is limited in practical applications due to the poor interface stability in traditional carbonate electrolytes. Herein, LiBF4 and LiNO3 are added as film-forming additives and 1.0 M LiPF6 in SL/FEC/EMC with 0.5 wt % LiBF4-LiNO3 (HVE) is obtained. A uniform and inorganic-rich cathode electrolyte interphase (CEI) as well as a dense and Li3N-LiF-rich solid electrolyte interphase (SEI) could be in situ generated on LiNi0.8Co0.1Mn0.1O2 (NCM811) and graphite (Gr) electrode in HVE, respectively. The robust interface film with electronic insulation and ionic conductivity effectively stabilizes the NCM811/Gr-electrolyte interfaces and improves the Li+ diffusion kinetics, enabling the high-load NCM811-Gr to maintain 85.2% capacity (∼180 mA h g-1) after 300 cycles under 4.4 V. Besides, the 4.2 V NCM811-Gr retains 90.4% of the initial capacity after 200 cycles at 2 C (∼6 mA h cm-2). Compared with the traditional carbonate electrolyte (LB301), HVE has obvious advantages in terms of high-voltage and fast dynamics performance. Especially, good thermal stability and economy make HVE a promising electrolyte for commercial high-energy LIBs.

17.
ACS Appl Mater Interfaces ; 14(27): 31148-31159, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35762923

RESUMO

The nature of dendrite-free magnesium (Mg) metal anodes is an important advantage in rechargeable magnesium batteries (RMBs). However, this traditional cognition needs to be reconsidered due to inhomogeneous Mg deposits under extreme electrochemical conditions. Herein, we report a three-dimensional (3D) Cu-based host with magnesiophilic Ag sites (denoted as "Ag@3D Cu mesh") to regulate Mg deposition behaviors and achieve uniform Mg electrodeposition. Mg deposition/stripping behaviors are obviously improved under the cooperative effect of nanowire structures and Ag sites. The test results indicate that nucleation overpotentials are reduced distinctly and cycling performances are prolonged, suggesting that the general rules of 3D structures and affinity sites improve the durability and reversibility of Mg deposition/stripping. Besides, a unique concave surface structure can induce Mg to deposit into the interior of the interspace, which utilizes Mg more efficiently and leads to improved electrochemical performances with limited Mg content. Furthermore, in situ optical microscopic images show that the Ag@3D Cu mesh can attain a smooth surface, nearly without Mg protrusions, under 8.0 mA cm-2, which prevents premature short circuits. This report is a pioneering work to demonstrate the feasibility of modification of Cu-based current collectors and the necessity of functional current collectors to improve the possibility of practical applications for RMBs.

18.
RSC Adv ; 12(8): 4805-4812, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35425521

RESUMO

The synthesis of nano-sized alloys of Pt and rare earth (RE) metal catalysts has been a huge challenge due to a significantly large standard reduction potential difference of Pt and RE metals and the high synthesis temperature. Pt x Y/C catalysts with an average particle size of around 21 nm, were synthesized by mixing K2PtCl4 with Y2O3 (a molar ratio of Pt : Y = 1 : 1) with a carbon support in a molten LiCl-CaH2 system by a one-step molten salt synthesis method at 600 °C. The synthesis processes of the Pt x Y/C alloys are proposed as follows: Pt nanoparticles were first obtained by the reaction of K2PtCl4 and CaH2 at 210 °C, then Y ions were preferentially reduced on the Pt nanoparticle surface by the reduction of CaH2, followed by Pt x Y alloy formation in the molten LiCl-CaH2 system at 600 °C. Molten LiCl provides a strong reducing environment and lowers the formation temperature of alloys. Pt2Gd/C and Pt2La/C were also obtained with Gd2O3 and La2O3 as the starting raw materials, respectively by using the same process. When investigated as an electrocatalyst for the oxygen reduction reaction (ORR), the half-wave potentials of Pt x RE/Cs are all more positive than that of commercial Pt/C catalyst (e.g., 0.905 V for Pt x Y/C while 0.880 V for JM Pt/C), and the nano-sized Pt x Y/C alloy shows higher electrocatalytic activity toward the ORR and preferable catalytic durability with respect to JM Pt/C catalysts. This facile synthesis method provides an effective strategy for the preparation of Pt-RE based multicomponent nanoalloys, especially in large-scale production.

19.
ACS Appl Mater Interfaces ; 14(16): 19056-19066, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35420775

RESUMO

The demand for high-energy-density lithium batteries (LBs) that work under a wide temperature range (-40 to 60 °C) has been increasing recently. However, the conventional lithium hexafluorophosphate (LiPF6)-based ester electrolyte with a solvent-based solvation structure has limited the practical application of LBs under extreme temperature conditions. In this work, a novel localized high-concentration electrolyte (LHCE) system is designed to achieve the anion-containing solvation structure with less free solvent molecules using lithium difluorophosphate (LiPO2F2) as a lithium salt, which enables wide-temperature electrolyte for LBs. The optimized solvation structure contributes to the cathode-electrolyte interface (CEI) with abundant LiF and P-O components on the surface of the LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode, effectively inhibiting the decomposition of electrolyte and the dissolution of transition-metal ions (TMIs). Moreover, the weakened Li+-dipole interaction is also beneficial to the desolvation process. Therefore, the 4.3 V Li||NCM523 cell using the modified electrolyte maintains a high capacity retention of 81.0% after 200 cycles under 60 °C. Meanwhile, a considerable capacity of 70.9 mAh g-1 (42.0% of that at room temperature) can be released at an extremely low temperature of -60 °C. This modified electrolyte dramatically enhances the electrochemical stability of NCM523 cells by regulating the solvation structure, providing guidelines for designing a multifunctional electrolyte that works under a wide temperature range.

20.
Adv Sci (Weinh) ; 9(6): e2104530, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34962107

RESUMO

Implementing fast-charging lithium-ion batteries (LIBs) is severely hindered by the issues of Li plating and poor rate capability for conventional graphite anode. Wadsley-Roth phase TiNb2 O7 is regarded as a promising anode candidate to satisfy the requirements of fast-charging LIBs. However, the unsatisfactory electrochemical kinetics resulting from sluggish ion and electron transfer still limit its wide applications. Herein, an effective strategy is proposed to synchronously improve the ion and electron transfer of TiNb2 O7 by incorporation of oxygen vacancy and N-doped graphene matrix (TNO- x @N-G), which is designed by combination of solution-combustion and electrostatic self-assembly approach. Theoretical calculations demonstrate that Li+ intercalation gives rise to the semi-metallic characteristics of lithiated phases (Liy TNO- x ), leading to the self-accelerated electron transport. Moreover, in situ X-ray diffraction and Raman measurements reveal the highly reversible structural evolution of the TNO- x @N-G during cycling. Consequently, the TNO- x @N-G delivers a higher reversible capacity of 199.0 mAh g-1 and a higher capacity retention of 86.5% than those of pristine TNO (155.8 mAh g-1 , 59.4%) at 10 C after 2000 cycles. Importantly, various electrochemical devices including lithium-ion full battery and hybrid lithium-ion capacitor by using the TNO- x @N-G anode exhibit excellent rate capability and cycling stability, verifying its potential in practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...