Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1027595, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523625

RESUMO

In this study, a three-year experiment on the fragrant pear orchard was conducted to investigate the effects of different varieties of green manure on the Korla fragrant pear fruit quality, with a view to finding a suitable green manure planting mode for Korla fragrant pear orchard. Green manures were planted in spaces among rows of pear trees, and then smashed and pressed into the soil as fertilisers by the agricultural machinery equipment in their full bloom period. In the experiment, four planting modes of green manure had been set for comparison: SA: Leguminosae green manures alfalfa (Medicago sativa L.), SP: Poaceae green manures oats (Avena sativa L.), ST: Cruciferae green manures oilseed rape (Brassica napus L.), and S: orchard authigenic green manures (Chenopodium album L., Mulgedium tataricum (L) DC., and Phragmites australis (Cav.) Trin. ex Steud.). Apart from that, eleven fruit quality indicators were analyzed to evaluating the effects of different green manure planting mode on the quality of fragrant pear. According to analysis of variance (ANOVA) results, there were significant differences among four planting modes in terms of nine fruit quality indicators (P<0.05). In addition, the correlation analysis (CA) results revealed that there were different degrees of correlations among quality indicators. On this basis, repeated information among indicators was eliminated by principal component analysis (PCA), thus simplifying and recombining the three principal components. All in all, these three principal components reflect appearance traits, internal nutritive value and taste of fruits, respectively. Specifically, SA significantly improved the internal quality and nutritive value of fruits, SP improved the physical traits of fruits, and ST significantly improved the taste of fruits. Based on the PCA results, a comprehensive evaluation model of fruit quality was constructed. The are comprehensive fruit quality scores:SA>SP>ST>S.

2.
Food Sci Nutr ; 10(12): 4091-4102, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36514752

RESUMO

In this paper, 317 literature in the Web of Science (WoS) related to research on apple by near-infrared spectroscopy (NIRS) were drawn on the knowledge map of the number of literature, the co-occurrence network of authors and institutions, the co-occurrence and clustering of keywords based on CiteSpace. And a related analysis was carried out. Combined with the results of visual analysis and related literature, the research hotspots were sorted out and discussed. This paper provides a certain reference for relevant researchers to study in this field and provides a new method for macroscopically grasping the current status of apple quality detection research, which helps new researchers to quickly integrate into this field and obtain more valuable scientific information.

3.
Front Bioeng Biotechnol ; 10: 906968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651547

RESUMO

Clean- and high-value recovery and reuse of the residue of biohydrogen production (biohydrogen slurry) is an urgent problem to be solved. In this study, sodium alginate (SA) gel was used to concentrate nutrients quickly in situ from biohydrogen slurry, which was prepared into gel microspheres (GMs), just like "capsule." The immobilization and release efficiency of conventional and reverse spherification were investigated. Better immobilization and release efficiency were detected under the conventional spherification method. The effect of GM sizes and concentrations of SA and calcium chloride (CaCl2) was further studied in terms of sphericity factor, nutrient release, yield, encapsulation efficiency, and loading capacity. The best immobilization effect was obtained with a 1.6-mm syringe needle, 3.0 wt% SA, and 6 wt% CaCl2, in which the sphericity factor, nitrogen release, yield, nitrogen encapsulation efficiency, and nitrogen loading capacity reached to 0.047, 96.20, 77.68, 38.37, and 0.0476%, respectively. This process not only avoids environmental pollution from biohydrogen slurry but also uses them at a high value as a fertilizer to nourish the soil. The feasibility of "slurry capsule" preparation will realize the clean recovery and reuse of biohydrogen slurry, which provides a new idea for ecological protection and carbon neutral goals and has important significance for sustainable development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...