Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 130: 155734, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38761775

RESUMO

BACKGROUND: Toxic components frequently exhibit unique characteristics and activities, offering ample opportunities for the advancement of anti-cancer medications. As the main hepatotoxic component of Dioscorea bulbifera L. (DB), Diosbulbin B (DIOB) has been widely studied for its anti-tumor activity at nontoxic doses. However, the effectiveness and mechanism of DIOB against non-small cell lung cancer (NSCLC) remains unclear. PURPOSE: To evaluate the anti-NSCLC activity of DIOB and to elucidate the specific mechanism of action. METHOD: The effect of DIOB on NSCLCL in vitro was evaluated through CCK8, colony formation, and flow cytometry. The in vivo efficacy and safety of DIOB in treating NSCLC were assessed using various techniques, including HE staining, tunel staining, immunohistochemistry, and biochemical index detection. To understand the underlying mechanism, cell transfection, western blotting, molecular docking, cellular thermal shift assay (CESTA), and surface plasmon resonance (SPR) were employed for investigation. RESULTS: DIOB effectively hindered the progression of NSCLC both in vitro and in vivo settings at a no-observed-adverse-effect concentration (NOAEC) and a safe dosage. Specifically, DIOB induced significant G0/G1 phase arrest and apoptosis in A549, PC-9, and H1299 cells, while also notably inhibiting the growth of subcutaneous tumors in nude mice. Mechanistically, DIOB could directly interact with oncogene Yin Yang 1 (YY1) and inhibit its expression. The reduction in YY1 resulted in the triggering of the tumor suppressor P53, which induced cell cycle arrest and apoptosis in NSCLC cells by inhibiting the expression of Cyclin A2, B2, CDK1, CDK2, CDK4, BCL-2, and inducing the expression of BAX. In NSCLC cells, the induction of G0/G1 phase arrest and apoptosis by DIOB was effectively reversed when YY1 was overexpressed or P53 was knocked down. Importantly, we observed that DIOB exerted the same effect by directly influencing the expression of YY1-regulated c-Myc and BIM, particularly in the absence of P53. CONCLUSION: For the inaugural investigation, this research unveiled the anti-NSCLC impact of DIOB, alongside its fundamental mechanism. DIOB has demonstrated potential as a treatment agent for NSCLC due to its impressive efficacy in countering NSCLC.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Pontos de Checagem do Ciclo Celular , Compostos Heterocíclicos de 4 ou mais Anéis , Neoplasias Pulmonares , Camundongos Nus , Fator de Transcrição YY1 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Animais , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Dioscorea/química , Camundongos , Camundongos Endogâmicos BALB C , Masculino , Simulação de Acoplamento Molecular , Células A549 , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Chromatogr A ; 1728: 465015, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38821032

RESUMO

Characterization studies of the plant metabolome are crucial for revealing plant physiology, developing functional foods, and controlling quality. Mass spectrometry-based metabolite profiling allows unprecedented qualitative coverage of complex biological extract composition. However, the electrospray ionization used in metabolite profiling generates multiple artifactual signals for a single analyte, which makes it challenging to filter out redundant signals and organize the signals corresponding to abundant constituents. This study proposed a strategy integrating in-source fragments elimination, diagnostic ions recognition, and feature-based molecular networking (ISFE-DIR-FBMN) to simultaneously characterize cycloartane triterpenoids (CTs) from three medicinal Cimicifuga species. The results showed that 63.1 % of the measured ions were redundant. A total of 184 CTs were annotated, with 27.1 % being reported for the first time. It presents a promising approach to assess the composition of natural extracts, thus facilitating new ingredient registrations or natural-extracts-based drug discovery campaigns. Besides, chemometrics analysis of the three Cimicifuga species identified 32 species-specific markers, highlighting significant differences among them. The valuable information can enhance the sustainable utilization and further development of Cimicifuga resources. The codes involved in ISFE-DIR-FBMN are freely available on GitHub (https://github.com/LHJ-Group/ISFE-DIR-FBMN.git).


Assuntos
Cimicifuga , Extratos Vegetais , Triterpenos , Triterpenos/análise , Triterpenos/química , Cimicifuga/química , Extratos Vegetais/química , Extratos Vegetais/análise , Especificidade da Espécie , Biomarcadores/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Metaboloma , Cromatografia Líquida de Alta Pressão/métodos
3.
Sci Rep ; 13(1): 20102, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973915

RESUMO

Splitting tensile strength (STS) is an important mechanical property of concrete. Modeling and predicting the STS of concrete containing Metakaolin is an important method for analyzing the mechanical properties. In this paper, four machine learning models, namely, Artificial Neural Network (ANN), support vector regression (SVR), random forest (RF), and Gradient Boosting Decision Tree (GBDT) were employed to predict the STS. The comprehensive comparison of predictive performance was conducted using evaluation metrics. The results indicate that, compared to other models, the GBDT model exhibits the best test performance with an R2 of 0.967, surpassing the values for ANN at 0.949, SVR at 0.963, and RF at 0.947. The other four error metrics are also the smallest among the models, with MSE = 0.041, RMSE = 0.204, MAE = 0.146, and MAPE = 4.856%. This model can serve as a prediction tool for STS in concrete containing Metakaolin, assisting or partially replacing laboratory compression tests, thereby saving costs and time. Moreover, the feature importance of input variables was investigated.

4.
J Food Prot ; 86(8): 100121, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37355008

RESUMO

Antioxidants are widely used to prevent oxidative degradation of food-contact plastics materials. However, when plastic products come into contact with food, antioxidants may contaminate food. Herein, twenty-three kinds of possible antioxidants were monitored in 257 products of seven polymers. The migration of antioxidants into the food simulants at different temperatures and times was detected by using HPLC-MS/MS. Risk assessment was performed based on the EU, U.S. FDA methods and Monte Carlo simulation. The antioxidants migrated mainly to fatty food simulant, with the highest concentration and occurrence frequency of Irgafos 168, followed byIrganox 1010, Irganox 1076, and Antioxidant LTDP in polyethylene terephthalate, polyvinyl chloride, polypropylene, polyethylene. No antioxidants were detected in polystyrene, polycarbonate, and polyvinylidene chloride. Additionally, antioxidants exhibited the highest detection rate of 0.81 in polyethylene. Risk assessment demonstrated that the antioxidants have no obvious health risk to the exposed population. However, the risk of polypropylene was relatively high compared to other polymers.


Assuntos
Antioxidantes , Plásticos , Antioxidantes/análise , Polipropilenos , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Embalagem de Alimentos , Polímeros , Polietileno , Contaminação de Alimentos/análise
5.
Food Addit Contam Part B Surveill ; 16(2): 120-129, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36843386

RESUMO

N-nitrosamines are human carcinogens commonly present in dried aquatic products. A method of gas chromatography - mass spectrometry combined with steam distillation was developed for the determination of 9 N-nitrosamines in dried aquatic products in Qingdao, China, with which 300 samples of fish, squid, shrimp and sea cucumber collected from Qingdao were analysed. A health risk assessment was conducted based on determined levels of N-nitrosamines by using estimated daily intake and slope factors. Results showed that fish products was the category with the highest content of N-nitrosamines, whereas squid and shrimp products were the categories with the highest frequency of presence of N-nitrosamines. The average estimated cancer risk of N-nitrosamines in dried aquatic products in Qingdao ranged from 3.57 × 10-8 to 3.53 × 10-5. Nitrosodimethylamine, N-Nitrosodiethylamine and N-Nitrosodibutylamine could be considered to pose a potential cancer risk to residents in Qingdao.


Assuntos
Neoplasias , Nitrosaminas , Animais , Humanos , Contaminação de Alimentos/análise , Nitrosaminas/análise , Dimetilnitrosamina/análise , Medição de Risco
6.
Phytother Res ; 37(1): 163-180, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36056681

RESUMO

Psoralen and isopsoralen are the pharmacologically important but hepatotoxic components in Psoraleae Fructus. The purpose of this study was to reveal the underlying mechanism of psoralen/isopsoralen-induced hepatotoxicity. Initially, we applied integrated analyses of transcriptomic and metabolomic profiles in mice treated with psoralen and isopsoralen, highlighting the xenobiotic metabolism by cytochromes P450 as a potential pathway. Then, with verifications of expression levels by qRT-PCR and western blot, affinities by molecular docking, and metabolic contributions by recombinant human CYP450 and mouse liver microsomes, CYP1A2 was screened out as the key metabolic enzyme. Afterwards, CYP1A2 induction and inhibition models in HepG2 cells and mice were established to verify the role of CYP1A2, demonstrating that induction of CYP1A2 aggravated the hepatotoxicity, and conversely inhibition alleviated the hepatotoxic effects. Additionally, we detected glutathione adducts with reactive intermediates of psoralen and isopsoralen generated by CYP1A2 metabolism in biosystems of recombinant human CYP1A2 and mouse liver microsomes, CYP1A2-overexpressed HepG2 cells, mice livers and the chemical reaction system using UPLC-Q-TOF-MS/MS. Ultimately, the high-content screening presented the cellular oxidative stress and relevant hepatotoxicity due to glutathione depletion by reactive intermediates. In brief, our findings illustrated that CYP1A2-mediated metabolic activation is responsible for the psoralen/isopsoralen-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Furocumarinas , Animais , Humanos , Camundongos , Ficusina/toxicidade , Citocromo P-450 CYP1A2 , Ativação Metabólica , Transcriptoma , Espectrometria de Massas em Tandem , Simulação de Acoplamento Molecular , Furocumarinas/toxicidade , Metabolômica , Glutationa
7.
J Ethnopharmacol ; 297: 115577, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35872289

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Psoraleae Fructus (PF), a traditional Chinese medicine, has long been used to treat diseases such as cancer, osteoporosis and leukoderma. Psoralen and isopsoralen are main bioactive ingredients of PF with anti-tumor, anti-inflammatory, estrogen-like neuroprotection, etc., meanwhile they are also representative hepatotoxic components of PF. Hepatic CYP1A2 has been reported to be the important metabolic enzymes involved in psoralen and isopsoralen-induced hepatotoxicity. However, the relationship between the hepatotoxicity and CYP1A2 expression, and the underlying mechanism of regulating CYP1A2 expression remain unclear. AIM OF STUDY: The aim of this study was to explore the associated mechanism between psoralen or isopsoralen induced hepatotoxicity and activated aryl hydrocarbon receptor (AhR)-mediated transcriptional induction of CYP1A2 in vitro and in vivo. MATERIALS AND METHODS: Psoralen and isopsoralen at different doses were treated on HepG2 cells (10, 25, 50, 100, 200 µM for 2, 12, 24, 36, 48 h) and mice (20, 80, 160 mg/kg for 3, 7, 14 days) for different time, to assess the correlation of induced hepatotoxicity and CYP1A2 mRNA and protein expression in vivo and in vitro, as well as the effect on CYP1A2 enzyme activity evaluated by phenacetin metabolism. In addition, the potential mechanism of the regulation of CYP1A2 expression mediated by AhR was explored through nucleocytoplasmic shuttling, immunofluorescence, cellular thermal shift assay and molecular docking, etc. RESULTS: Psoralen and isopsoralen induced cytotoxicity in HepG2 cells, and hepatomegaly, biochemicals disorder and tissue pathological impairment in mice, respectively in dose- and time-dependent manners. Simultaneously accompanied with elevated levels of CYP1A2 mRNA and protein in the same trend, and the CYP1A2 activity was remarkably inhibited in vitro but significantly elevated overall in vivo. Besides, psoralen and isopsoralen bound to AhR and activated translocation of AhR from the cytoplasm to the nucleus, leading to the transcriptional induction of target gene CYP1A2. CONCLUSIONS: Hepatotoxicities in HepG2 cells and mice aroused by psoralen and isopsoralen were related to the induction of CYP1A2 expression and activity, whose underlying mechanism might be psoralen or isopsoralen activated AhR translocation and induced increase of CYP1A2 transcriptional expression. Hopefully, these finding are conductive to propose an alert about the combined usage of psoralen or isopsoralen and AhR ligands or CYP1A2 substrates in clinical practice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Furocumarinas , Animais , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Ficusina/toxicidade , Furocumarinas/toxicidade , Camundongos , Simulação de Acoplamento Molecular , RNA Mensageiro , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
8.
J Ethnopharmacol ; 293: 115254, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35381309

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Epimedii Folium (EF) is a common traditional Chinese medicine that functions as a tonifying kidney yang to strengthen bones and muscles and dispel wind dampness (limb pain, lethargy, nausea, anorexia, and loose stools). Several studies have reported the potential risk of cholestatic liver damage from EF use; however, there have been few investigations of EF-induced cholestasis, particularly the underlying mechanisms. AIMS OF THE STUDY: The purpose of this study was to evaluate the risk of EF-induced cholestasis in vivo and to explore the mechanisms of action. MATERIALS AND METHODS: ICR mice were orally administered a water extract of EF (WEF) in doses of 6.5 and 19.5 g/kg/day for 14 weeks. Liver-to-body weight ratios, body weight, histopathological examination, and biochemical analyses were performed to assess WEF-induced cholestasis in the mice. Genes associated with bile acid (BA) metabolism and transport, including sodium taurocholate cotransporting polypeptide (NTCP), cytochrome P450 8B1 (CYP8B1), bile-salt export pump (BSEP), multidrug resistance P-glycoproteins 1 (MDR1), and farnesoid X receptor (FXR), were measured at the transcript and protein levels to investigate the potential mechanisms through which cholestasis is aroused by EF. RESULTS: After administration of WEF for 14 weeks, mice in the high-dose WEF group showed poor health with an increased liver-to-body weight ratio as well as higher serum aminotransferase, alkaline phosphatase, direct bilirubin, and total BA levels. Compared with the control group, mRNA expression of NTCP and cholesterol 7a-hydroxylase (CYP7A1) increased, and levels of BSEP, MDR1, multidrug resistance-associated protein 2, and multidrug resistance-associated protein 3 decreased in the WEF-treated group. NTCP, BSEP, MDR1, and CYP8B1 showed similar mRNA and protein expression trends. CONCLUSION: We demonstrated that the long-term oral administration of WEF causes cholestatic liver injury in mice, which is consistent with reported clinical cases. Furthermore, we found that the destruction of BA metabolism and transport is involved in WEF-induced cholestasis. The fine-scale molecular mechanisms of WEF-induced cholestasis and the active compounds of EF need further study.


Assuntos
Colestase , Esteroide 12-alfa-Hidroxilase , Administração Oral , Animais , Ácidos e Sais Biliares , Peso Corporal , Colestase/tratamento farmacológico , Medicamentos de Ervas Chinesas , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos ICR , RNA Mensageiro , Receptores Citoplasmáticos e Nucleares
9.
Ecotoxicol Environ Saf ; 205: 111166, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827966

RESUMO

N, N-Dimethylformamide (DMF) is a universal organic solvent which widely used in various industries, and a considerable amount of DMF is detected in industrial effluents. Accumulating animal and epidemiological studies have identified liver injury as an early toxic effect of DMF exposure; however, the detailed mechanisms remain poorly understood. In this study, we systematically integrated the quantitative proteomics, lipidomics, and metabolomics data obtained from the primary human hepatocytes exposed to DMF, to depict the complicated biochemical reactions correlated to liver damage. Eventually, we identified 284 deregulated proteins (221 downregulated and 63 upregulated) and 149 deregulated lipids or metabolites (99 downregulated and 50 upregulated) induced by DMF exposure. Further, the integration of the protein-metabolite (lipid) interactions revealed that N-glycan biosynthesis (involved in the endoplasmic reticulum stress and the unfolded protein response), bile acid metabolism (involved in the lipid metabolism and the inflammatory process), and mitochondrial dysfunction and glutathione depletion (both contributed to reactive oxygen species) were the typical biochemical reactions disturbed by DMF exposure. In summary, our study identified the versatile protein, lipid, and metabolite molecules in multiple signaling and metabolic pathways involved in DMF induced liver injury, and provided new insights to elucidate the toxic mechanisms of DMF.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Dimetilformamida/toxicidade , Poluentes Ambientais/toxicidade , Hepatócitos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Proteoma/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glutationa/metabolismo , Hepatócitos/metabolismo , Humanos , Lipidômica , Metabolômica , Cultura Primária de Células , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Testes de Toxicidade/métodos
10.
Mol Pharmacol ; 98(2): 120-129, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32499331

RESUMO

Alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs) are vital enzymes involved in the metabolism of a variety of alcohols. Differences in the expression and enzymatic activity of human ADHs and ALDHs correlate with individual variability in metabolizing alcohols and drugs and in the susceptibility to alcoholic liver disease. MicroRNAs (miRNAs) function as epigenetic modulators to regulate the expression of drug-metabolizing enzymes. To characterize miRNAs that target ADHs and ALDHs in human liver cells, we carried out a systematic bioinformatics analysis to analyze free energies of the interaction between miRNAs and their cognate sequences in ADH and ALDH transcripts and then calculated expression correlations between miRNAs and their targeting ADH and ALDH genes using a public data base. Candidate miRNAs were selected to evaluate bioinformatic predictions using a series of biochemical assays. Our results showed that 11 miRNAs have the potential to modulate the expression of two ADH and seven ALDH genes in the human liver. We found that hsa-miR-1301-3p suppressed the expression of ADH6, ALDH5A1, and ALDH8A1 in liver cells and blocked their induction by ethanol. In summary, our results revealed that hsa-miR-1301-3p plays an important role in ethanol metabolism by regulating ADH and ALDH gene expression. SIGNIFICANCE STATEMENT: Systematic bioinformatics analysis showed that 11 microRNAs might play regulatory roles in the expression of two alcohol dehydrogenase (ADH) and seven aldehyde dehydrogenase (ALDH) genes in the human liver. Experimental evidences proved that hsa-miR-1301-3p suppressed the expression of ADH6, ALDH5A1, and ALDH8A1 in liver cells and decreased their inducibility by ethanol.


Assuntos
Álcool Desidrogenase/genética , Aldeído Desidrogenase/genética , Fígado/metabolismo , MicroRNAs/genética , Succinato-Semialdeído Desidrogenase/genética , Acetaldeído/metabolismo , Acetatos/metabolismo , Linhagem Celular , Etanol/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Redes e Vias Metabólicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...