Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 113(10): 1512-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961270

RESUMO

VPAC2 receptors sensitive to vasoactive intestinal polypeptide (VIP) and pituitary adenylyl cyclase activating polypeptide (PACAP), PAC1 receptors sensitive to PACAP, and nitric oxide (NO) generation by NO synthase (NOS) are all implicated in cutaneous active vasodilation (AVD) through incompletely defined mechanisms. We hypothesized that VPAC2/PAC1 receptor activation and NO are synergistic and interdependent in AVD and tested our hypothesis by examining the effects of VPAC2/PAC1 receptor blockade with and without NOS inhibition during heat stress. The VPAC2/PAC1 antagonist, pituitary adenylate cyclase activating peptide 6-38 (PACAP6-38) and the NOS inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME) were administered by intradermal microdialysis. PACAP6-38, l-NAME, a combination of PACAP6-38 and l-NAME, or Ringer's solution alone were perfused at four separate sites. Skin blood flow was monitored by laser-Doppler flowmetry at each site. Body temperature was controlled with water-perfused suits. Blood pressure was monitored by Finapres, and cutaneous vascular conductance (CVC) calculated (CVC = laser-Doppler flowmetry/mean arterial pressure). The protocol began with a 5- to 10-min baseline period without antagonist perfusion, followed by perfusion of PACAP6-38, l-NAME, or combined PACAP6-38 and l-NAME at the different sites in normothermia (45 min), followed by 3 min of whole body cooling. Whole body heating was then performed to induce heat stress and activate AVD. Finally, 58 mM sodium nitroprusside were perfused at all sites to effect maximal vasodilation for normalization of blood flow data. No significant differences in CVC (normalized to maximum) were found among Ringer's PACAP6-38, l-NAME, or combined antagonist sites during normothermia (P > 0.05 among sites) or cold stress (P > 0.05 among sites). CVC responses at all treated sites were attenuated during AVD (P < 0.05 vs. Ringer's). Attenuation was greater at l-NAME and combined PACAP6-38- and l-NAME-treated sites than at PACAP6-38 sites (P > 0.05). Because responses did not differ between l-NAME and combined treatment sites (P > 0.05), we conclude that VPAC2/PAC1 receptors require NO in series to effect AVD.


Assuntos
Transtornos de Estresse por Calor/metabolismo , Resposta ao Choque Térmico , Óxido Nítrico/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Pele/irrigação sanguínea , Vasodilatação , Adulto , Análise de Variância , Pressão Arterial , Velocidade do Fluxo Sanguíneo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiopatologia , Regulação da Temperatura Corporal , Inibidores Enzimáticos/farmacologia , Feminino , Frequência Cardíaca , Transtornos de Estresse por Calor/fisiopatologia , Humanos , Fluxometria por Laser-Doppler , Masculino , Microdiálise , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Nitroprussiato/farmacologia , Fragmentos de Peptídeos/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/antagonistas & inibidores , Receptores Tipo II de Peptídeo Intestinal Vasoativo/antagonistas & inibidores , Fluxo Sanguíneo Regional , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
2.
J Appl Physiol (1985) ; 110(5): 1406-13, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21292837

RESUMO

We hypothesized that nitric oxide activation of soluble guanylyl cyclase (sGC) participates in cutaneous vasodilation during whole body heat stress and local skin warming. We examined the effects of the sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), on reflex skin blood flow responses to whole body heat stress and on nonreflex responses to increased local skin temperature. Blood flow was monitored by laser-Doppler flowmetry, and blood pressure by Finapres to calculate cutaneous vascular conductance (CVC). Intradermal microdialysis was used to treat one site with 1 mM ODQ in 2% DMSO and Ringer, a second site with 2% DMSO in Ringer, and a third site received Ringer. In protocol 1, after a period of normothermia, whole body heat stress was induced. In protocol 2, local heating units warmed local skin temperature from 34 to 41°C to cause local vasodilation. In protocol 1, in normothermia, CVC did not differ among sites [ODQ, 15 ± 3% maximum CVC (CVC(max)); DMSO, 14 ± 3% CVC(max); Ringer, 17 ± 6% CVC(max); P > 0.05]. During heat stress, ODQ attenuated CVC increases (ODQ, 54 ± 4% CVC(max); DMSO, 64 ± 4% CVC(max); Ringer, 63 ± 4% CVC(max); P < 0.05, ODQ vs. DMSO or Ringer). In protocol 2, at 34°C local temperature, CVC did not differ among sites (ODQ, 17 ± 2% CVC(max); DMSO, 18 ± 4% CVC(max); Ringer, 18 ± 3% CVC(max); P > 0.05). ODQ attenuated CVC increases at 41°C local temperature (ODQ, 54 ± 5% CVC(max); DMSO, 86 ± 4% CVC(max); Ringer, 90 ± 2% CVC(max); P < 0.05 ODQ vs. DMSO or Ringer). sGC participates in neurogenic active vasodilation during heat stress and in the local response to direct skin warming.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Resposta ao Choque Térmico/fisiologia , Óxido Nítrico/metabolismo , Temperatura Cutânea/fisiologia , Vasodilatação/fisiologia , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Feminino , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Pele/irrigação sanguínea , Temperatura Cutânea/efeitos dos fármacos , Solubilidade , Vasodilatação/efeitos dos fármacos
3.
J Appl Physiol (1985) ; 109(1): 95-100, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20395540

RESUMO

Vasoactive intestinal peptide (VIP) is implicated in cutaneous active vasodilation in humans. VIP and the closely related pituitary adenylate cyclase activating peptide (PACAP) act through several receptor types: VIP through VPAC1 and VPAC2 receptors and PACAP through VPAC1, VPAC2, and PAC1 receptors. We examined participation of VPAC2 and/or PAC1 receptors in cutaneous vasodilation during heat stress by testing the effects of their specific blockade with PACAP6-38. PACAP6-38 dissolved in Ringer's was administered by intradermal microdialysis at one forearm site while a control site received Ringer's solution. Skin blood flow was monitored by laser-Doppler flowmetry (LDF). Blood pressure was monitored noninvasively and cutaneous vascular conductance (CVC) calculated. A 5- to 10-min baseline period was followed by approximately 70 min of PACAP6-38 (100 microM) perfusion at one site in normothermia and a 3-min period of body cooling. Whole body heating was then performed to engage cutaneous active vasodilation and was maintained until CVC had plateaued at an elevated level at all sites for 5-10 min. Finally, 58 mM sodium nitroprusside was perfused through both microdialysis sites to effect maximal vasodilation. No CVC differences were found between control and PACAP6-38-treated sites during normothermia (19 +/- 3%max untreated vs. 20 +/- 3%max, PACAP6-38 treated; P > 0.05 between sites) or cold stress (11 +/- 2%max untreated vs. 10 +/- 2%max, PACAP6-38 treated, P > 0.05 between sites). PACAP6-38 attenuated the increase in CVC during whole body heating when compared with untreated sites (59 +/- 3%max untreated vs. 46 +/- 3%max, PACAP6-38 treated, P < 0.05). We conclude that VPAC2 and/or PAC1 receptor activation is involved in cutaneous active vasodilation in humans.


Assuntos
Resposta ao Choque Térmico/fisiologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Receptores Tipo II de Peptídeo Intestinal Vasoativo/fisiologia , Pele/irrigação sanguínea , Vasodilatação/fisiologia , Adulto , Regulação da Temperatura Corporal/fisiologia , Feminino , Antebraço , Temperatura Alta , Humanos , Masculino , Nitroprussiato/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/antagonistas & inibidores , Receptores Tipo II de Peptídeo Intestinal Vasoativo/antagonistas & inibidores , Pele/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia , Peptídeo Intestinal Vasoativo/fisiologia , Vasodilatadores/farmacologia
4.
J Appl Physiol (1985) ; 107(5): 1438-44, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19745188

RESUMO

Nitric oxide (NO) participates in the cutaneous vasodilation caused by increased local skin temperature (Tloc) and whole body heat stress in humans. In forearm skin, endothelial NO synthase (eNOS) participates in vasodilation due to elevated Tloc and neuronal NO synthase (nNOS) participates in vasodilation due to heat stress. To explore the relative roles and interactions of these isoforms, we examined the effects of a relatively specific eNOS inhibitor, N(omega)-amino-l-arginine (LNAA), and a specific nNOS inhibitor, N(omega)-propyl-l-arginine (NPLA), both separately and in combination, on skin blood flow (SkBF) responses to increased Tloc and heat stress in two protocols. In each protocol, SkBF was monitored by laser-Doppler flowmetry (LDF) and mean arterial pressure (MAP) by Finapres. Cutaneous vascular conductance (CVC) was calculated (CVC = LDF/MAP). Intradermal microdialysis was used to treat one site with 5 mM LNAA, another with 5 mM NPLA, a third with combined 5 mM LNAA and 5 mM NPLA (Mix), and a fourth site with Ringer only. In protocol 1, Tloc was controlled with combined LDF/local heating units. Tloc was increased from 34 degrees C to 41.5 degrees C to cause local vasodilation. In protocol 2, after a period of normothermia, whole body heat stress was induced (water-perfused suits). At the end of each protocol, all sites were perfused with 58 mM nitroprusside to effect maximal vasodilation for data normalization. In protocol 1, at Tloc = 34 degrees C, CVC did not differ between sites (P > 0.05). LNAA and Mix attenuated CVC increases at Tloc = 41.5 degrees C to similar extents (P < 0.05, LNAA or Mix vs. untreated or NPLA). In protocol 2, in normothermia, CVC did not differ between sites (P > 0.05). During heat stress, NPLA and Mix attenuated CVC increases to similar extents, but no significant attenuation occurred with LNAA (P < 0.05, NPLA or Mix vs. untreated or LNAA). In forearm skin, eNOS mediates the vasodilator response to increased Tloc and nNOS mediates the vasodilator response to heat stress. The two isoforms do not appear to interact during either response.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Resposta ao Choque Térmico/fisiologia , Óxido Nítrico Sintase/metabolismo , Temperatura Cutânea/fisiologia , Pele/irrigação sanguínea , Vasodilatação/fisiologia , Adulto , Feminino , Humanos , Masculino
5.
Am J Physiol Heart Circ Physiol ; 295(1): H123-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18469149

RESUMO

Nitric oxide (NO) participates in locally mediated vasodilation induced by increased local skin temperature (T(loc)) and in sympathetically mediated vasodilation during whole body heat stress. We hypothesized that endothelial NOS (eNOS) participates in the former, but not the latter, response. We tested this hypothesis by examining the effects of the eNOS antagonist N(G)-amino-l-arginine (l-NAA) on skin blood flow (SkBF) responses to increased T(loc) and whole body heat stress. Microdialysis probes were inserted into forearm skin for drug delivery. One microdialysis site was perfused with l-NAA in Ringer solution and a second site with Ringer solution alone. SkBF [laser-Doppler flowmetry (LDF)] and blood pressure [mean arterial pressure (MAP)] were monitored, and cutaneous vascular conductance (CVC) was calculated (CVC = LDF / MAP). In protocol 1, T(loc) was controlled with LDF/local heating units. T(loc) initially was held at 34 degrees C and then increased to 41.5 degrees C. In protocol 2, after a normothermic period, whole body heat stress was induced (water-perfused suits). At the end of both protocols, 58 mM sodium nitroprusside was perfused at both microdialysis sites to cause maximal vasodilation for data normalization. In protocol 1, CVC at 34 degrees C T(loc) did not differ between l-NAA-treated and untreated sites (P > 0.05). Local skin warming to 41.5 degrees C T(loc) increased CVC at both sites. This response was attenuated at l-NAA-treated sites (P < 0.05). In protocol 2, during normothermia, CVC did not differ between l-NAA-treated and untreated sites (P > 0.05). During heat stress, CVC rose to similar levels at l-NAA-treated and untreated sites (P > 0.05). We conclude that eNOS is predominantly responsible for NO generation in skin during responses to increased T(loc), but not during reflex responses to whole body heat stress.


Assuntos
Arginina/análogos & derivados , Endotélio Vascular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Transtornos de Estresse por Calor/fisiopatologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Temperatura Cutânea , Pele/irrigação sanguínea , Vasodilatação/efeitos dos fármacos , Administração Cutânea , Adulto , Arginina/administração & dosagem , Arginina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Endotélio Vascular/enzimologia , Inibidores Enzimáticos/administração & dosagem , Feminino , Antebraço , Transtornos de Estresse por Calor/metabolismo , Humanos , Fluxometria por Laser-Doppler , Masculino , Microdiálise , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Nitroprussiato/farmacologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fatores de Tempo , Vasodilatadores/farmacologia
6.
J Physiol ; 586(3): 847-57, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18048451

RESUMO

The physiological roles of constitutively expressed nitric oxide synthase (NOS) isoforms in humans, in vivo, are unknown. Cutaneous vasodilatation during both central nervous system-mediated, thermoregulatory reflex responses to whole-body heat stress and during peripheral axon reflex-mediated, local responses to skin warming in humans depend on nitric oxide (NO) generation by constitutively expressed NOS of uncertain isoform. We hypothesized that neuronal NOS (nNOS, NOS I) effects cutaneous vasodilatation during whole-body heat stress, but not during local skin warming. We examined the effects of the nNOS inhibitor 7-nitroindazole (7-NI) administered by intradermal microdialysis on vasodilatation induced by whole-body heat stress or local skin warming. Skin blood flow (SkBF) was monitored by laser-Doppler flowmetry (LDF). Blood pressure (MAP) was monitored and cutaneous vascular conductance calculated (CVC = LDF/MAP). In protocol 1, whole-body heat stress was induced with water-perfused suits. In protocol 2, local skin warming was induced through local warming units at LDF sites. At the end of each protocol, 56 mm sodium nitroprusside was perfused at microdialysis sites to raise SkBF to maximal levels for data normalization. 7-NI significantly attenuated CVC increases during whole-body heat stress (P < 0.05), but had no effect on CVC increases induced by local skin warming (P > 0.05). These diametrically opposite effects of 7-NI on two NO-dependent processes verify selective nNOS antagonism, thus proving that the nNOS isoform affects NO increases and hence vasodilatation during centrally mediated, reflex responses to whole-body heat stress, but not during locally mediated, axon reflex responses to local skin warming. We conclude that the constitutively expressed nNOS isoform has distinct physiological roles in cardiovascular control mechanisms in humans, in vivo.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo , Pele/irrigação sanguínea , Vasodilatação/fisiologia , Adulto , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Indazóis/farmacologia , Isoenzimas/metabolismo , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Nitroprussiato , Fluxo Sanguíneo Regional/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores , Sistema Vasomotor/efeitos dos fármacos , Sistema Vasomotor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...