Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38832959

RESUMO

A prominent tripartite model proposes that parent role modeling of emotion regulation, emotion socialization behaviors, and the emotional climate of the family are important for young people's emotional development. However, limited research has examined the neural mechanisms at play. Here, we examined the associations between family and parenting factors, the neural correlates of emotional reactivity and regulation, and internalizing symptoms in early adolescent girls. Sixty-four female adolescents aged 10-12 years with elevated internalizing symptoms completed emotional reactivity, implicit (affect labeling) and explicit (cognitive reappraisal) emotion regulation tasks during functional magnetic resonance imaging. Positive family emotional climate was associated with greater activation in the anterior cingulate and middle temporal cortices during emotional reactivity. Maternal emotion regulation difficulties were associated with increased frontal pole and supramarginal gyrus activation during affect labeling, whereas supportive maternal emotion socialization and positive family emotional climate were associated with activation in prefrontal regions, including inferior frontal and superior frontal gyri, respectively, during cognitive reappraisal. No mediating effects of brain function were observed in the associations between family/parenting factors and adolescent symptoms. These findings highlight the role of family and parenting behaviors in adolescent emotion regulation neurobiology, and contribute to prominent models of adolescent emotional development.

2.
Cell Discov ; 9(1): 40, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041132

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has elicited a worldwide pandemic since late 2019. There has been ~675 million confirmed coronavirus disease 2019 (COVID-19) cases, leading to more than 6.8 million deaths as of March 1, 2023. Five SARS-CoV-2 variants of concern (VOCs) were tracked as they emerged and were subsequently characterized. However, it is still difficult to predict the next dominant variant due to the rapid evolution of its spike (S) glycoprotein, which affects the binding activity between cellular receptor angiotensin-converting enzyme 2 (ACE2) and blocks the presenting epitope from humoral monoclonal antibody (mAb) recognition. Here, we established a robust mammalian cell-surface-display platform to study the interactions of S-ACE2 and S-mAb on a large scale. A lentivirus library of S variants was generated via in silico chip synthesis followed by site-directed saturation mutagenesis, after which the enriched candidates were acquired through single-cell fluorescence sorting and analyzed by third-generation DNA sequencing technologies. The mutational landscape provides a blueprint for understanding the key residues of the S protein binding affinity to ACE2 and mAb evasion. It was found that S205F, Y453F, Q493A, Q493M, Q498H, Q498Y, N501F, and N501T showed a 3-12-fold increase in infectivity, of which Y453F, Q493A, and Q498Y exhibited at least a 10-fold resistance to mAbs REGN10933, LY-CoV555, and REGN10987, respectively. These methods for mammalian cells may assist in the precise control of SARS-CoV-2 in the future.

3.
ACS Appl Mater Interfaces ; 15(18): 21941-21952, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37099714

RESUMO

Radiodynamic therapy (RDT), which produces 1O2 and other reactive oxygen species (ROS) in response to X-rays, can be used in conjunction with radiation therapy (RT) to drastically lower X-ray dosage and reduce radio resistance associated with conventional radiation treatment. However, radiation-radiodynamic therapy (RT-RDT) is still impotent in a hypoxic environment in solid tumors due to its oxygen-dependent nature. Chemodynamic therapy (CDT) can generate reactive oxygen species and O2 by decomposing H2O2 in hypoxic cells and thus potentiate RT-RDT to achieve synergy. Herein, we developed a multifunctional nanosystem, AuCu-Ce6-TPP (ACCT), for RT-RDT-CDT. Ce6 photosensitizers were conjugated to AuCu nanoparticles via Au-S bonds to realize radiodynamic sensitization. Cu can be oxidized by H2O2 and catalyze the degradation of H2O2 to generate •OH through the Fenton-like reaction to realize CDT. Meanwhile, the degradation byproduct oxygen can alleviate hypoxia while Au can consume glutathione to increase the oxidative stress. We then attached mercaptoethyl-triphenylphosphonium (TPP-SH) to the nanosystem, targeting ACCT to mitochondria (colocalization Pearson coefficient 0.98) to directly disrupt mitochondrial membranes and more efficiently induce apoptosis. We confirmed that ACCT efficiently generates 1O2 and •OH upon X-ray irradiation, resulting in strong anticancer efficacy in both normoxic and hypoxic 4T1 cells. The down-regulation of hypoxia-inducible factor 1α expression and reduction of intracellular H2O2 concentrations suggested that ACCT could significantly alleviate hypoxia in 4T1 cells. ACCT-enhanced RT-RDT-CDT can successfully shrink or remove tumors in radioresistant 4T1 tumor-bearing mice upon 4 Gy of X-ray irradiation. Our work thus presents a new strategy to treat radioresistant hypoxic tumors.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/farmacologia , Mitocôndrias , Oxigênio , Hipóxia
4.
Emerg Microbes Infect ; 11(1): 1488-1499, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35587428

RESUMO

The recent global pandemic was a spillover from the SARS-CoV-2 virus. Viral entry involves the receptor binding domain (RBD) of the viral spike protein interacting with the protease domain (PD) of the cellular receptor, ACE2. We hereby present a comprehensive mutational landscape of the effects of ACE2-PD point mutations on RBD-ACE2 binding using a saturation mutagenesis approach based on microarray-based oligo synthesis and a single-cell screening assay. We observed that changes in glycosylation sites and directly interacting sites of ACE2-PD significantly influenced ACE2-RBD binding. We further engineered an ACE2 decoy receptor with critical point mutations, D30I, L79W, T92N, N322V, and K475F, named C4-1. C4-1 shows a 200-fold increase in neutralization for the SARS-CoV-2 D614G pseudotyped virus compared to wild-type soluble ACE2 and a sevenfold increase in binding affinity to wild-type spike compared to the C-terminal Ig-Fc fused wild-type soluble ACE2. Moreover, C4-1 efficiently neutralized prevalent variants, especially the omicron variant (EC50=16 ng/mL), and rescued monoclonal antibodies, vaccine, and convalescent sera neutralization from viral immune-escaping. We hope to next investigate translating the therapeutic potential of C4-1 for the treatment of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , COVID-19/terapia , Humanos , Imunização Passiva , Mutagênese , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...