Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 165: 115219, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37531782

RESUMO

Periodontitis and diabetes have a bidirectional link, making therapeutic treatment of periodontitis and diabetes challenging. Numerous factors, including microbes, inflammatory cytokines, immune cell activity, glucose levels, and metabolic disorders, contribute to the bidirectional relationship of periodontitis and diabetes. Basic periodontal treatment, medication, surgical treatment, and combined treatment are the most widely used treatments, but their efficacy are limited. Because of their capacity to support bone remodeling and tissue regeneration and restoration, reduce blood glucose levels, restore islet function, and ameliorate local and systemic inflammation, stem cell-derived exosomes have emerged as a possible therapeutic. In this review, we summarize the utilization of stem cell-derived exosomes in periodontitis and diabetes,discuss their potential mechanisms in periodontitis and diabetes bidirectional promoters. It provides some theoretical basis for using stem cell-derived exosomes to regulate the bidirectional link between periodontitis and diabetes.


Assuntos
Diabetes Mellitus , Exossomos , Periodontite , Humanos , Exossomos/metabolismo , Periodontite/metabolismo , Diabetes Mellitus/metabolismo , Inflamação/metabolismo , Células-Tronco
2.
Front Immunol ; 14: 1125257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251412

RESUMO

Systemic sclerosis (SSc) is an intricate systemic autoimmune disease with pathological features such as vascular injury, immune dysregulation, and extensive fibrosis of the skin and multiple organs. Treatment options are limited; however, recently, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been acknowledged in preclinical and clinical trials as being useful in treating autoimmune diseases and are likely superior to MSCs alone. Recent research has also shown that MSC-EVs can ameliorate SSc and the pathological changes in vasculopathy, immune dysfunction, and fibrosis. This review summarizes the therapeutic effects of MSC-EVs on SSc and the mechanisms that have been discovered to provide a theoretical basis for future studies on the role of MSC-EVs in treating SSc.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Escleroderma Sistêmico , Humanos , Imunomodulação , Escleroderma Sistêmico/terapia , Fibrose
3.
Sci Immunol ; 7(67): eabb6032, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061506

RESUMO

The autoimmune regulator (AIRE) induces the transcription of thousands of peripheral tissue genes (PTGs) in thymic epithelial cells (TECs) to mediate immunological tolerance. The chromatin state required for optimal AIRE function in TECs and how this state is induced remains unclear. We tested the role of the histone acetyltransferase, KAT7 (also known as HBO1 or MYST2), which is essential for acetylation of histone 3 lysine 14, in TEC differentiation, AIRE-mediated PTG expression, and thymic tolerance. We find that KAT7 is required for optimal expansion of medullary TEC and has a major role in the expression of AIRE-dependent PTGs, associated with enhanced chromatin accessibility at these gene loci in TECs. Mice with TEC-specific Kat7 deletion develop organ-specific autoimmunity with features resembling those observed in Aire-deficient mice. These findings highlight critical roles for KAT7-mediated acetylation in promoting a chromatin state at PTG loci that enables AIRE function and the establishment of immunological tolerance.


Assuntos
Células Epiteliais/imunologia , Histona Acetiltransferases/imunologia , Timo/imunologia , Fatores de Transcrição/imunologia , Animais , Tolerância Imunológica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Timo/citologia , Proteína AIRE
4.
Cell Death Differ ; 28(10): 2946-2956, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34381167

RESUMO

Thymic epithelial cells (TECs) form a unique microenvironment that orchestrates T cell differentiation and immunological tolerance. Despite the importance of TECs for adaptive immunity, there is an incomplete understanding of the signalling networks that support their differentiation and survival. We report that the linear ubiquitin chain assembly complex (LUBAC) is essential for medullary TEC (mTEC) differentiation, cortical TEC survival and prevention of premature thymic atrophy. TEC-specific loss of LUBAC proteins, HOIL-1 or HOIP, severely impaired expansion of the thymic medulla and AIRE-expressing cells. Furthermore, HOIL-1-deficiency caused early thymic atrophy due to Caspase-8/MLKL-dependent apoptosis/necroptosis of cortical TECs. By contrast, deficiency in the LUBAC component, SHARPIN, caused relatively mild defects only in mTECs. These distinct roles for LUBAC components in TECs correlate with their function in linear ubiquitination, NFκB activation and cell survival. Thus, our findings reveal dual roles for LUBAC signaling in TEC differentiation and survival.


Assuntos
Timo/citologia , Timo/metabolismo , Ubiquitina/metabolismo , Animais , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...