Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 21414, 2024 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271714

RESUMO

Low back pain (LBP) is largely attributed to intervertebral disc degeneration (IVDD), of which the endplate changes are an important component. However, the alterations in cell fate and properties within the endplates during degeneration remain unknown. Here, we firstly performed the single-cell RNA-sequencing analysis (scRNA-seq) of the cells focusing on degenerative human endplates. By unsupervised clustering of the 8,534 single-cell based on the gene expression, we identified nine distinct cell types. We employed Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, and the single-cell regulatory network inference and clustering (SCENIC) to determine the enriched pathways and transcriptional activities across seven chondrocyte subpopulations. Furthermore, two cell fates of chondrocyte differentiation were found by trajectory analysis, one was enriched in inflammation-related genes, and the other was related to extracellular matrix (ECM). Additionally, the intercellular interactions of macrophages (MA) and chondrocytes, T cells/natural killer cells (T/NK) and chondrocytes were examined by ligand-receptor pairs analysis, showing the important regulative function of FN1 from MA and CD74 from T/NK during endplate degeneration. Overall, our findings provide novel perspectives on the endplate degeneration at the single-cell level and a whole-transcriptome size.


Assuntos
Diferenciação Celular , Condrócitos , Degeneração do Disco Intervertebral , Análise de Sequência de RNA , Análise de Célula Única , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Análise de Célula Única/métodos , Condrócitos/metabolismo , Condrócitos/patologia , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Feminino , Masculino , Redes Reguladoras de Genes , Pessoa de Meia-Idade , Macrófagos/metabolismo , Adulto , Disco Intervertebral/patologia , Disco Intervertebral/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38853707

RESUMO

BACKGROUND: Nucleus pulposus cell (NPC) senescence in intervertebral disc (IVD) tissue is the major pathological cause of intervertebral disc degeneration (IDD). N6-methyladenosine (m6A) methylation and gut microbiota play important roles in the progression of IDD. This study investigated whether methyltransferase-like 3 (METTL3) regulates TLR2 m6A modification and gut microbiota to influence NPC senescence. METHODS: An IDD rat model was established by lumbar IVD puncture and NPCs were challenged with IL-1ß to mimic IVD injury. IDD rats and IL-1ß-exposed NPCs were treated with METTL3-interfering lentivirus and the TLR2 agonist Pam3CSK4. Compositional changes in the rat gut microbiota were analyzed and fecal microbiota transplantation procedures were used. NPC senescence, cell cycle, and the expression of senescence-associated secretory phenotype (SASP) factors were assessed. The m6A enrichment of TLR2 and the binding of IGF2BP1 to TLR2 mRNA were examined. RESULTS: METTL3 and TLR2 were highly expressed in IDD rats. METTL3 silencing attenuated senescent phenotypes and reduced secretion of SASP factors. Pam3CSK4 reversed the beneficial effects of METTL3 silencing on NPC senescence and IVD injury. METTL3 stabilized TLR2 mRNA in an IGF2BP1-dependent manner. METTL3 silencing restored specific gut microbiota levels in IDD rats, which was further reversed by administration of Pam3CSK4. Fecal microbiota from METTL3 silenced IDD rats altered the pathological phenotypes of IDD rats. CONCLUSIONS: These results demonstrate the beneficial effects of METTL3 silencing on NPC senescence and amelioration of IVD injury, involving modulation of TLR2 m6A modification and gut microbiota. These findings support METTL3 silencing as a potential therapeutic target for IDD.


Assuntos
Senescência Celular , Microbioma Gastrointestinal , Degeneração do Disco Intervertebral , Metiltransferases , Núcleo Pulposo , Ratos Sprague-Dawley , Receptor 2 Toll-Like , Animais , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Ratos , Metiltransferases/metabolismo , Metiltransferases/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/microbiologia , Masculino , Modelos Animais de Doenças , Metilação , Adenosina/análogos & derivados , Adenosina/metabolismo
3.
Nat Commun ; 15(1): 2939, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580630

RESUMO

Endplate sclerosis is a notable aspect of spine degeneration or aging, but the mechanisms remain unclear. Here, we report that senescent macrophages accumulate in the sclerotic endplates of lumbar spine instability (LSI) or aging male mouse model. Specifically, knockout of cdkn2a (p16) in macrophages abrogates LSI or aging-induced angiogenesis and sclerosis in the endplates. Furthermore, both in vivo and in vitro studies indicate that IL-10 is the primary elevated cytokine of senescence-related secretory phenotype (SASP). Mechanistically, IL-10 increases pSTAT3 in endothelial cells, leading to pSTAT3 directly binding to the promoters of Vegfa, Mmp2, and Pdgfb to encourage their production, resulting in angiogenesis. This study provides information on understanding the link between immune senescence and endplate sclerosis, which might be useful for therapeutic approaches.


Assuntos
Senescência Celular , Interleucina-10 , Animais , Masculino , Camundongos , Angiogênese , Células Endoteliais , Interleucina-10/genética , Macrófagos , Esclerose
4.
J Environ Manage ; 353: 120213, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38295637

RESUMO

Contamination of heavy metals has always been a pressing concern. The dry-wet alternately treated carboxymethylcellulose bentonite (DW-CB) was successfully prepared by intercalating bentonite (BT) with carboxymethyl cellulose (CMC) obtained by solvent processes using enzymatically digested wastepaper as cellulosic raw material, and the adsorption capacity of Cu2+ on DW-CB in aqueous solution was investigated. A 98.18 ± 2.31 % removal efficiency was achieved by 4 g/L of DW-CB after 8 h in a solution containing 100 mg/L of Cu2+, which were 4.1 times and 1.5 times of that of BT and adsorbent prepared without alternating dry-wet process, respectively. The introduction of -COOH groups during the preparation of DW-CB enhanced the electrostatic interaction between DW-CB and Cu2+, which was the main driving force for Cu2+ removal. The pseudo-first-order kinetic model and Langmuir model better described the adsorption process and adsorption capacity of Cu2+ on DW-CB. DW-CB still showed high removal of Cu2+ (19.61 ± 0.99 mg/g) in the presence of multiple metal ions, while exhibiting the potential for removal of Zn2+, Mg2+ and K+, especially Mg2+ (22.69 ± 1.48 mg/g). However, the interactions of organics with Cu2+ severely affected the removal of Cu2+ by DW-CB (removal efficiency: 17.90 ± 4.17 % - 95.33 ± 0.27 %). In this study, an adsorbent with high targeted adsorption of Cu2+ was prepared by utilizing wastepaper and BT, which broadened the way of wastepaper resource utilization and had good economic and social benefits.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Bentonita , Cobre/análise , Poluentes Químicos da Água/análise , Água , Cinética , Adsorção , Concentração de Íons de Hidrogênio
5.
J Environ Manage ; 347: 119158, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804638

RESUMO

Microplastics (MPs) have already spread across the globe and have been found in drinking water and human tissues. This may pose severe threats to human health and water environment. Therefore, this study accurately evaluated the removal effect of metal-modified biochar on polystyrene microplastics (PS-MPs) (1.0 µm) in the water environment using a high-throughput fluorescence quantification method. The results indicated that Fe-modified biochar (FeBC) and Fe/Zn-modified biochar (Fe/ZnBC) had good removal efficiencies for PS-MPs under the dosage of 3 g/L, which were 96.24% and 84.77%, respectively. Although pore effects were observed (such as "stuck", "trapped"), the electrostatic interaction was considered the main mechanism for the adsorption of PS-MPs on metal-modified biochar, whereas the formation of metal-O-PS-MPs may also contribute to the adsorption process. The removal efficiency of PS-MPs by FeBC was significantly reduced under alkaline conditions (pH = 9 and 11) or in the presence of weak acid ions (PO43-, CO32-, HCO3-). A removal efficiency of 72.39% and 78.33% of PS-MPs was achieved from tap water (TW) and lake water (LW) using FeBC when the initial concentration was 20 mg/L. However, FeBC had no removal effect on PS-MPs in biogas slurry (BS) and brewing wastewater (BW) due to the direct competitive adsorption of high concentrations of chemical oxygen demand (COD). The findings of this study highlighted that metal-modified biochar had a potential application in purifying tap water or lake water which contaminated by MPs.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos , Água , Adsorção , Metais
6.
Huan Jing Ke Xue ; 44(8): 4728-4741, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694665

RESUMO

The extensive application of plastic products leads to the increasingly significant harm of plastic wastes to the ecological environment, which is also a focus of global environmental issues. Due to the lack of a sound plastic waste management system, most plastic waste is still treated by the traditional mode or remains in the environment, with low recycling efficiency, and the plastic life cycle has not yet formed. Plastics in the environment will age and degrade under the actions of physical (wear, waves), chemical (ultraviolet radiation, hydrolysis), and biological (fungi, bacteria) factors for a long time and generate micro (nano) plastics. Due to their small particle size, large specific surface area, and charged characteristics, in addition to their own toxicity, they can also be used as carriers or covert carriers of pollutants (heavy metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, bacteria, etc.) to migrate in the environment through runoff, sewage discharge, and hydrometeorology, causing ecological environmental pollution. MPs pollution has been listed as the second largest scientific problem in the field of environmental and ecological science by the United Nations Environment Programme. MPs are widely distributed, and there are different degrees of MPs pollution in the global water (freshwater, ocean), soil, and atmospheric environment. Traces of MPs have also been found in human placentas, human breastmilk, living lungs, and blood in recent years. Therefore, the formation mechanisms of MPs under the actions of physics, chemistry, and microorganisms, as well as their abundance levels and migration characteristics in water, soil, and atmosphere environment were comprehensively reviewed, with the hope of providing reference for monitoring the pollution levels of MPs in the environment, exploring their transport laws in the environment, proposing the management strategy of MPs pollution, and revealing the degradation mechanisms of MPs under different effects.


Assuntos
Microplásticos , Plásticos , Humanos , Feminino , Gravidez , Raios Ultravioleta , Atmosfera , Meio Ambiente
7.
Nanotechnology ; 31(20): 205201, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952059

RESUMO

We present a systematic study on the effects of CF4 plasma immersion ion implantation (PIII) in Si on the phase evolution of ultra-thin Ni silicides. For 3 nm Ni, NiSi2 was formed on Si substrates with and without CF4 PIII at temperature as low as 400 °C. For 6 nm Ni, NiSi was formed on pure Si, while epitaxial NiSi2 was obtained on CF4 PIII Si. The incorporation of C and F atoms in the thin epitaxial NiSi2 significantly reduces the layer resistivity. Increasing the Ni thickness to 8 nm results in the formation of NiSi, where the thermal stability of NiSi, the NiSi/Si interface and Schottky contacts are significantly improved with CF4 PIII. We suggest that the interface energy is lowered by the F and C dopants present in the layer and at the interface, leading to phase evolution of the thin Ni silicide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA