Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 12(3): 1973-1982, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455188

RESUMO

This study investigated the effects of different processing methods on the quality and nutrition of soymilk, as well as the changes in storage stability (centrifugal sedimentation rate (CSR), viscosity, and particle size) and shelf-life of soymilk at different storage temperatures (25°C, 35°C, 45°C, and 55°C). Results showed that soymilk processed via the repeated boiling-to-filtering method (RBFM) exhibited the highest protein content (3.89 g/100 g), carbohydrate content (1.27 g/100 g), and stability coefficient (0.950). The CSR and particle size of RBFM soymilk increased gradually during storage at different temperatures, while the viscosity and sensory score decreased. The correlation between the CSR and the sensory score of RBFM soymilk was the highest (R 2 = .9868). The CSR was selected as the key indicator to predict the shelf-life of RBFM soymilk. The average residual variation in RBFM soymilk shelf-life based on the predictive model was 10.78%, indicating the strong accuracy of the model for predicting the shelf-life of RBFM soymilk stored at temperatures ranging from 25-45°C. This study provides a theoretical basis and technological support for the development, transportation, and storage of soymilk and soymilk beverage products.

2.
Int J Biol Macromol ; 237: 124105, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948342

RESUMO

The development of cereal foods with slow starch digestibility is important for the general improvement of human health. In this study, the quality properties of noodles with added okara, in vitro starch digestibility, and the underlying mechanisms of the influence of okara on noodles were studied. Low concentrations (5 and 10 %) of okara improved the texture, cooking, and sensory properties of the noodles. Okara decreased the rapidly digestible starch (RDS) content, increased the resistant starch (RS) content, and reduced the predicted glycaemic index (pGI) of noodles. The pasting viscosity, thermal stability, and dynamic rheological results indicated that okara improved the starch crystallite stability of wheat flour and viscoelasticity of dough. Moreover, Fourier transform infrared (FTIR) spectroscopy showed that okara promoted the formation of starch-lipid complexes and improved the short-range structural order of starch. Additionally, microstructure imaging and protein network analysis (PNA) indicated that low addition of okara promoted the compactness of the okara-gluten-starch matrix, thus reducing the contact between starch and hydrolytic enzymes. These results reveal the effect of okara on the quality properties and starch digestibility in a starch-gluten complex system.


Assuntos
Farinha , Amido , Humanos , Amido/química , Farinha/análise , Triticum/química , Culinária , Glutens/química
3.
Front Nutr ; 10: 1092745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925952

RESUMO

As a traditional fermentation food, red sour soup (RSS) is very popular in China. However, browning is always occurred during the process of fermentation, which influences the sensory quality of RSS and limits its further application. Thus, it is meaningful to elucidate the main factors related to browning during the process of fermentation. Herein, the changes in various factors related to browning from group spontaneous (RSS-SF) and inoculant fermentation (RSS-IF) were determined and analyzed. Firstly, the activity changes of enzymes related to browning indicated that browning of group RSS-SF and RSS-IF during fermentation was not related to enzymatic browning. Secondly, path analysis revealed that the main factors related to non-enzymatic browning of group RSS-SF and RSS-IF were oxidation of polyphenol and degradation of ascorbic acid (Vc). The results of this study not only identifies the main factors associate with browning of RSS, but also provides foundation on how to control the browning of RSS in further study.

4.
Foods ; 12(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36832916

RESUMO

Leisure dried tofu (LD-tofu) was prepared using two different marinating processes: the repeated heating method (RHM) and the vacuum pulse method (VPM). The quality characteristics and bacterial community succession of LD-tofu and the marinade were evaluated. The results showed that the nutrients in LD-tofu were easily dissolved into the marinade during the marinating process, while the protein and moisture content of RHM LD-tofu changed most dramatically. With the increase in marinade recycling times, the springiness, chewiness and hardness of VPM LD-tofu increased significantly. The total viable count (TVC) of the VPM LD-tofu decreased from the initial value of 4.41 lg cfu/g to 2.51-2.67 lg cfu/g as a result of the marinating process, which had a significant inhibitory effect. Additionally, 26, 167 and 356 communities in the LD-tofu and marinade were detected at the phylum, family and genus levels, respectively. Pearson correlation analysis showed that Pseudomonadaceae, Thermaceae and Lactobacillaceae were closely related to the quality characteristics of LD-tofu, whereas Caulobacteriaceae, Bacillaceae and Enterobacteriae were closely related to the marinade. The present work provides a theoretical basis for the screening of functional strains and quality control in LD-tofu and marinade.

5.
Front Nutr ; 9: 1007164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386903

RESUMO

Red Sour Soup (RSS) is a traditional fermented food in China. After two rounds of fermentation, sour soup has a mellow flavor. However, the microbial composition and flavor formation processes in post-fermentation in RSS are unclear. This study investigates the bacteria composition of RSS during the post-fermentation stage (0-180 days) using high-throughput sequencing. The results show that lactic acid bacteria (LAB) are dominant during the post-fermentation process, and their abundance gradually increases with fermentation time. Additionally, gas chromatography-mass spectrometry was used to detect volatile flavor compounds in the post-fermentation process. Seventy-seven volatile flavor compounds were identified, including 24 esters, 14 terpenes, 9 aromatic hydrocarbons, 9 alkanes, 6 heterocyclic compounds, 3 alcohols, 3 acids, 3 ketones, 2 phenols, 2 aldehydes, 1 amine, and 1 other. Esters and aromatic hydrocarbons are the main volatile compounds in RSS during the post-fermentation process. Orthogonal partial least squares screening and correlation analysis derived several significant correlations, including 48 pairs of positive correlations and 19 pairs of negative correlations. Among them, Acetobacter spp., Clostridium spp. and Sporolactobacillus spp. have 15, 14, 20 significant correlation pairs, respectively, and are considered the most important bacterial genera post-fermentation. Volatile substances become abundant with increasing fermentation time. LAB are excessive after more than 120 days but cause a drastic reduction in volatile ester levels. Thus, the post-fermentation time should be restricted to 120 days, which retains the highest concentrations of volatile esters in RSS. Overall, these findings provide a theoretical basis to determine an optimal post-fermentation time duration, and identify essential bacteria for manufacturing high-quality starter material to shorten the RSS post-fermentation processing time.

6.
Front Microbiol ; 13: 1007201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225376

RESUMO

Chitosan oligosaccharides (COSs) are widely applied in many areas due to its various biological activities. Controllable preparation of COSs with desired degree of polymerization (DP) via suitable chitosanase is of great value. Herein, a novel glycoside hydrolase (GH) family 46 chitosanase (SlCsn46) from marine Streptomyces lydicus S1 was prepared, characterized and used to controllably produce COSs with different DP. The specific activity of purified recombinant SlCsn46 was 1,008.5 U/mg. The optimal temperature and pH of purified SlCsn46 were 50°C and 6.0, respectively. Metal ions Mn2+ could improve the stability of SlCsn46. Additionally, SlCsn46 can efficiently hydrolyze 2% and 4% colloidal chitosan to prepare COSs with DP 2-4, 2-5, and 2-6 by adjusting the amount of SlCsn46 added. Moreover, COSs with DP 2-4, 2-5, and 2-6 exhibited potential application value for prolonging the shelf-life of pre-packaged Tofu. The water-holding capacity (WHC), sensorial properties, total viable count (TVC), pH and total volatile base nitrogen (TVB-N) of pre-packed tofu incorporated with 4 mg/mL COSs with DP 2-4, 2-5, and 2-6 were better than those of the control during 15 days of storage at 10°C. Thus, the controllable hydrolysis strategy provides an effective method to prepare COSs with desired DP and its potential application on preservation of pre-packed tofu.

7.
Foods ; 11(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36230214

RESUMO

Isoelectric solubilisation/co-precipitation (ISP) has been proven to be a better method than blending for preparing plant-animal dual-proteins, which can achieve synergies in the functional properties of heterologous proteins. This paper aims to investigate the effect of extraction pH on the functional properties of co-precipitated dual-protein. The basic composition, subunit composition, solubility, surface hydrophobicity, emulsification and gel properties of co-precipitated dual-protein (Co) prepared from pea and grass carp with pH (2.0, 3.0, 9.0, 10.0 and 11.0) were analysed in this study using ISP. The results showed that the functional properties of Co (Co9, Co10, Co11) prepared by alkali extraction were generally better than those prepared by acid extraction (Co2, Co3). Among them, Co10 has the highest vicilin/legumin α + ß value and solubility, while having the lowest surface hydrophobicity, making its emulsification and gel properties superior to other extraction pH values. This study provides an important method reference for preparing plant-animal Co with exceptional functional properties.

8.
Front Microbiol ; 13: 968439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090104

RESUMO

Proteases are important for decomposition of proteins to generate peptides or amino acids and have a broad range of applications in different industries. Herein, a gene encoding an alkaline protease (AprBcp) from Bacillus circulans R1 was cloned and bioinformatics analyzed. In addition, a series of strategies were applied to achieve high-level expression of AprBcp in Bacillus subtilis. The maximum activity of AprBcp reached 165,870 U/ml after 60 h fed-batch cultivation in 50 l bioreactor. The purified recombinant AprBcp exhibited maximum activity at 60°C and pH 10.0, and remained stable in the range from pH 8.0 to 11.0 and 30 to 45°C. Metal ions Ca2+, Mn2+, and Mg2+ could improve the stability of AprBcp. Furthermore, the recombinant AprBcp displayed great potential application on the recovery of protein from soybean dregs. The results of this study will provide an effective method to prepare AprBcp in B. subtilis and its potential application on utilization of soybean dregs.

9.
J Agric Food Chem ; 70(36): 11353-11366, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044725

RESUMO

Epigallocatechin gallate (EGCG) is easily oxidized by environmental stress elements, including light, heat, and oxygen; thus, its biological activities can be reduced or even lost when exposed to a natural environment. Here, soluble soybean polysaccharide (SSPS) was successfully etherized by 3-chloro-2-hydroxypropyl trimethylammonium chloride (CHPTAC), positively charged to extract cationic SSPS (CSSPS). Nanoparticles based on CSSPS can improve the encapsulation efficiency (EE) and sustained bioactivity of EGCG. The EE of EGCG by CSSPS was improved significantly as compared with that of SSPS due to the electrostatic interactions. Furthermore, the protective and sustained-release effects of CSSPS on EGCG in the EGCG-CSSPS nanoparticles (EGCG-CSSPS-NPs) markedly improved the sustained antioxidant and antimicrobial activities of EGCG, which was confirmed by the results of a salmon-preservation experiment. In addition, cytotoxicity tests showed that EGCG-CSSPS-NPs could effectively inhibit the proliferation of tumor cells but had no obvious toxicity to normal cells.


Assuntos
Anti-Infecciosos , Catequina , Nanopartículas , Antioxidantes/farmacologia , Catequina/análogos & derivados , Catequina/farmacologia , Cátions , Polissacarídeos/farmacologia , Glycine max
10.
Food Sci Nutr ; 10(3): 772-783, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35311166

RESUMO

Soybean protein isolate (SPI) is a high-quality plant protein that is primarily used to process various soybean products coagulated by transglutaminase (TGase). In this study, the degree of hydrolysis (DH), sulfhydryl content (SH), surface hydrophobicity (H0 ), secondary structural constitution, and microstructure of TGase-treated soybean protein (SPI, 7S, and 11S) were determined, as well as the effects of NaCl, urea, and SDS on the properties and intermolecular forces of SPI gel were analyzed. The results show that the H0 and SH content of SPI, 7S, and 11S decreased significantly with TGase treatment time (p < .05), while the DH gradually increased and reached its highest value (3.72%, 7.41%, and 1.27%, respectively) at 30 min. As the concentration of these two secondary structures exhibited an inverse relationship, the degradation of ß-turns resulted in the increase in ß-sheets. The microstructures of SPI and 11S gels were similar, being denser and more ordered than 7S gel. The low concentration of NaCl solution (0.2 mol/L) enhanced gel properties and intermolecular forces, promoting the formation of SPI gel, whereas a high concentration (0.4-0.8 mol/L) had a significant inhibitory effect. Urea and SDS solutions substantially inhibited the formation of SPI gel, leading to significant decreases in the water holding capacity and hardness as well as a considerable increase in the coagulation time (p < .05). The results revealed that hydrogen bonds and hydrophobic interactions were the main intermolecular forces responsible for the gel formation. This study provides adequate technical support and a theoretical basis for soybean protein gel products.

11.
Foods ; 11(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159491

RESUMO

Chinese red sour soup is a traditional fermented product famous in the southwestern part of China owing to its distinguished sour and spicy flavor. In the present study, the effect of inoculation of lactic acid bacteria (LAB) on the microbial communities and metabolite contents of the Chinese red sour soup was investigated. Traditional red sour soup was made with tomato and red chilli pepper and a live count (108 CFU/mL) of five bacterial strains (including Clostridium intestinalis: Lacticaseibacillus rhamnosus: Lactiplantibacillus plantarum: Lacticaseibacillus casei: Lactobacillus paracei) was added and fermented for 30 days in an incubator at 37 °C. Three replicates were randomly taken at 0 d, 5 d, 10 d, 15 d, 20 d, 25 d and 30 d of fermentation, with a total of 21 sour soup samples. Metabolomic analysis and 16S-rDNA amplicon sequencing of soup samples were performed to determine microbial diversity and metabolite contents. Results revealed that fermentation resulted in the depletion of native bacterial strains as LAB dominated over other microbes, resulting in differences in the relative abundance of bacteria, and types or contents of metabolites. A decrease (p < 0.01) in Shannon and Simpson indices was observed at different fermentation times. The metabolomic analyses revealed a significant increase in the relative content of 10 metabolites (particularly lactic acid, thymine, and ascorbic acid) in fermented samples as compared to the control. The correlation network revealed a positive association of Lacticaseibacillus rhamnosus with differentially enriched metabolites including lactic acid, ascorbic acid, and chlorogenic acid, which can desirably contribute to the flavor and quality of the red sour soup.

12.
Foods ; 11(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37430942

RESUMO

Currently, the processing method of introducing plant protein into meat products has attracted great attention. However, the direct addition of plant protein often leads to a decline in meat product quality. This paper aims to provide an efficient method for incorporating plant protein into fish sausage. Pea protein isolate (PPI), grass carp protein isolate (CPI) and pea-grass carp coprecipitated dual protein (Co) were derived from pea and grass carp by an isoelectric solubilisation/precipitation method. At the same time, the blended dual protein (BL) was obtained by blending PPI with CPI, and the plant and animal protein content of Co and BL was both controlled to be the same. The four proteins were combined with soybean oil and water to form a three-phase pre-emulsification system of protein-oil-water, which was added to grass carp meat as a replacement for animal fat to prepare fish sausage. The gelation properties of the four fish sausages and those without protein were analysed. The results showed that the gel quality of PPI fish sausage is poor, while the overall quality of Co fish sausage as a whole was significantly superior to that of PPI and BL, which was equivalent to CPI fish sausage. The sensory score of the Co fish sausage was slightly lower than that of CPI, but it had significantly higher water-holding capacity and hardness (p < 0.05). The Co fish sausage showed the synergistic effect of heterologous proteins, while BL had some antagonistic effects. This study shows that Co pre-emulsion is an effective strategy to introduce plant protein, so it has a good application prospect in the meat industry.

13.
Front Microbiol ; 12: 781138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912320

RESUMO

Chitosanase plays an important role in enzymatic production of chitosan oligosaccharides (COSs). The present study describes the gene cloning and high-level expression of a high-efficiency chitosanase from Bacillus mojavensis SY1 (CsnBm). The gene encoding CsnBm was obtained by homologous cloning, ligated to pPICZαA, and transformed into Pichia pastoris X33. A recombinant strain designated X33-C3 with the highest activity was isolated from 120 recombinant colonies. The maximum activity and total protein concentration of recombinant strain X33-C3 were 6,052 U/ml and 3.75 g/l, respectively, which were obtained in fed-batch cultivation in a 50-l bioreactor. The optimal temperature and pH of purified CsnBm were 55°C and 5.5, respectively. Meanwhile, CsnBm was stable from pH 4.0 to 9.0 and 40 to 55°C. The purified CsnBm exhibited high activity toward colloidal chitosan with degrees of deacetylation from 85 to 95%. Furthermore, CsnBm exhibited high efficiency to hydrolyze different concentration of colloidal chitosan to produce COSs. The result of this study not only identifies a high-efficiency chitosanase for preparation of COSs, but also casts some insight into the high-level production of chitosanase in heterologous systems.

14.
Foods ; 10(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34945588

RESUMO

Currently, the application of protein mixture derived from plants and animals is of great interest to the food industry. However, the synergistic effects of isolated protein blends (BL) are not well established. Herein, the development of a more effective method (co-precipitation) for the production of protein mixtures from pea and grass carp is reported. Pea protein isolate (PPI), grass carp protein isolate (CPI), and pea-carp protein co-precipitates (Co) were prepared via isoelectric solubilization/precipitation using peas and grass carp as raw materials. Meanwhile, the BL was obtained by blending PPI with CPI. In addition, the subunit composition and functional properties of Co and BL were investigated. The results show that the ratios of vicilin to legumin α + ß and the soluble aggregates of Co were 2.82- and 1.69-fold higher than that of BL. The surface hydrophobicity of Co was less than that of BL, PPI, and CPI (p < 0.05). The solubility of Co was greater than that of BL, PPI, and CPI (p < 0.05), and the foaming activity was higher than that of BL and CPI (p < 0.05) but slightly lower than that of PPI. In addition, based on the emulsifying activity index, particle size, microstructure, and viscosity, Co had better emulsifying properties than BL, PPI, and CPI. The study not only confirmed that co-precipitation was more effective than blending for the preparation of mixed protein using PPI and CPI but also provided a standard of reference for obtaining a mixture of plant and animal proteins.

15.
Food Sci Nutr ; 9(7): 3701-3711, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34262729

RESUMO

The technological applications utilized for tofu processing are diverse and complex, resulting in different yields and quality characteristics of tofu. The current study investigated the gel-forming principle of soybean protein coagulated using fermented yellow whey (FYW) to produce tofu. The effects of several processing parameters (soybean-to-water ratio, boiling temperature, boiling time, and FYW content) on the yield and protein content of tofu produced by the boiling-to-filtering method (BFM) were studied and optimized using response surface methodology. Results indicated significant differences in yield and protein content of tofu using different processing parameters, with FYW content being the most significant (p < .05). Optimum processing parameters of the BFM were found to be: soybean-to-water ratio of 1:5 (kg:kg), boiling time 6.1 min, boiling temperature 105°C, and FYW content of 26%. Under optimum conditions, tofu's yield and protein content were 235.17 g/100 g and 10.60%, respectively, and these were 47.93 g/100 g and 4.16% higher than those before optimization. This study provides practical technical support and a theoretical basis for the standardized industrial production of high-yield and high-protein tofu.

16.
Anal Sci ; 37(2): 301-307, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32893250

RESUMO

Leisure dried tofu is a kind of small packaged food which is popular with consumers in China. However, during the storage of leisure dried tofu, moisture and fat may be lost and deteriorate. For their own benefit, bad business operators might forge or mark the production date and shelf life. Therefore, it is necessary to explore a method to determine simultaneously the moisture, fat content, and storage time of leisure dried tofu. Samples were measured for obtaining transverse relaxation data by using low-field nuclear magnetic resonance (LF-NMR) spectrometer. The experimental data were analyzed and modeled by methods including partial least squares (PLS) or back-propagation artificial neural network (BP-ANN). The results show that the models can be used to predict the moisture, fat content, and storage time rapidly, nondestructively, accurately, and simultaneously. Furthermore, in order to explore the changes of nutrients in leisure dried tofu with the storage time, the storage dynamics of moisture and fat was considered by a using corresponding calibration model.


Assuntos
Gorduras/análise , Armazenamento de Alimentos , Alimentos de Soja/análise , China , Umidade , Espectroscopia de Ressonância Magnética , Fatores de Tempo
17.
Biotechnol J ; 15(8): e1900430, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32170989

RESUMO

Cyclin D1 is a key regulatory factor of the G1 to S transition during cell cycle progression. Aberrant cyclin D gene amplification and abnormal protein expression have been linked to hepatocellular carcinoma (HCC) tumorigenesis. Intrabodies, effective anticancer therapies that specifically inhibit target protein function within all intracellular compartments, may block cyclin D1 function. Here, a single-chain variable fragment (scFv) antibody against cyclin D1 (ADκ) selected from a human semi-synthetic phage display scFv library is expressed in Escherichia coli as soluble ADκ. Purified ADκ specifically binds to recombinant and endogenous cyclin D1 with high affinity. To enable blocking of intracellular cyclin D1 activity, an endoplasmic reticulum (ER) retention signal sequence is added to the ADκ sequence to encode anti-cyclin D1 intrabody ER-ADκ. Transfection of HepG2 cells with expression vector encoding ER-ADκ elicited intracellular ER-ADκ expression leading to cyclin D1 binding, significant G1 phase arrest, and apoptosis that are mechanistically tied to decreased intracellular phosphorylated retinoblastoma protein (Rb) levels. Meanwhile, ER-ADκ dramatically inhibited subcutaneous human HCC xenografts growth in nude mice in vivo after injection of tumors with expression vector encoding ER-ADκ. These results demonstrate the potential of intrabody-based cyclin D1 targeting therapy as a promising treatment for HCC.


Assuntos
Carcinoma Hepatocelular , Divisão Celular , Proliferação de Células , Ciclina D1 , Anticorpos de Cadeia Única , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Ciclo Celular , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Camundongos Nus , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/uso terapêutico
18.
Biomed Pharmacother ; 123: 109783, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31855737

RESUMO

Acetaminophen (APAP) overdose has become the most common cause of drug-induced acute liver failure. Angiogenesis and redox homeostasis play an important role in liver protection and repair of APAP-induced acute liver injury (AILI). Hypoxia inducible factor-1 (HIF-1) is a transcription factor that plays a crucial role in regulating the expression of genes associated with angiogenesis, redox homeostasis and energy balance. Prolyl hydroxylase 2 (PHD2) predominantly hydroxylates proline residues in HIF-1α to promote its degradation. In our previous study, we reported an intrabody against PHD2 (ER-INP) that enhances angiogenesis by blocking PHD2 activity to increase HIF-1α abundance and activity. The present study was designed to explore the role and possible mechanisms of ER-INP in AILI in mice. Mice were pretreated intravenously with ER-INP before intraperitoneal injection of APAP to induce AILI. The results showed that pretreatment with ER-INP dramatically decreased the high ALT and AST activities and significantly ameliorated the centrilobular necrosis induced by APAP administration. ER-INP expression promoted angiogenesis in vivo by upregulating the mRNA and protein levels of HIF-1α target genes. Meanwhile, ER-INP pretreatment restored redox homeostasis, verified by reinforcement of PRDX4 activity and suppression of GSH depletion. This study demonstrated that ER-INP protects against AILI in part by increasing angiogenesis and maintaining redox homeostasis. These results indicate that ER-INP may provide a potential liver protection strategy against AILI in the future.


Assuntos
Acetaminofen/intoxicação , Anticorpos/imunologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Prolina Dioxigenases do Fator Induzível por Hipóxia/imunologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Células HEK293 , Homeostase/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica/imunologia , Oxirredução/efeitos dos fármacos , Células RAW 264.7
19.
Sci Rep ; 9(1): 11861, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413262

RESUMO

Hypoxia-inducible factor (HIF)-1α is a crucial transcription factor that regulates the expression of target genes involved in angiogenesis. Prolyl hydroxylase 2 (PHD2) dominantly hydroxylates two highly conserved proline residues of HIF-1α to promote its degradation. This study was designed to construct an intrabody against PHD2 that can inhibit PHD2 activity and promote angiogenesis. Single-chain variable fragment (scFv) against PHD2, INP, was isolated by phage display technique and was modified with an endoplasmic reticulum (ER) sequence to obtain ER-retained intrabody against PHD2 (ER-INP). ER-INP was efficiently expressed and bound to PHD2 in cells, significantly increased the levels of HIF-1α, and decreased hydroxylated HIF-1α in human embryonic kidney cell line (HEK293) cells and mouse mononuclear macrophage leukaemia cell line (RAW264.7) cells. ER-INP has shown distinct angiogenic activity both in vitro and in vivo, as ER-INP expression significantly promoted the migration and tube formation of human umbilical vein endothelial cells (HUVECs) and enhanced angiogenesis of chick chorioallantoic membranes (CAMs). Furthermore, ER-INP promoted distinct expression and secretion of a range of angiogenic factors. To the best of our knowledge, this is the first study to report an ER-INP intrabody enhancing angiogenesis by blocking PHD2 activity to increase HIF-1α abundance and activity. These results indicate that ER-INP may play a role in the clinical treatment of tissue injury and ischemic diseases in the future.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neovascularização Fisiológica , Prolil Hidroxilases/metabolismo , Animais , Linhagem Celular , Movimento Celular , Galinhas , Membrana Corioalantoide/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Estabilidade Proteica , Regulação para Cima
20.
Oncol Lett ; 12(2): 1124-1128, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27446405

RESUMO

The androgen signaling pathway serves an important role in the development of prostate cancer. ß-Catenin is an androgen receptor (AR) cofactor and augments AR signaling. Glycogen synthase kinase-3ß (GSK-3ß), a target of phosphorylated serine/threonine protein kinase B (p-Akt), regulates ß-catenin stability. In addition, ß-catenin, a coregulator of AR, physically interacts with AR and enhances AR-mediated target gene transcription. The multifunctional glycoprotein cluster of differentiation (CD) 147 is highly expressed on the cell surface of the majority of cancer cells, and it promotes tumor invasion, metastasis and growth. In the present study, the molecular effects of CD147 on the Akt/GSK-3ß/ß-catenin/AR signaling network were investigated in LNCaP cells. Using short hairpin-mediated RNA knockdown of CD147 in LNCaP cells, it was demonstrated that downregulation of CD147 resulted in inhibitory phosphorylation of GSK-3ß, and then promoted degeneration of ß-catenin and reduced nuclear accumulation of ß-catenin. In addition, immunoprecipitation studies demonstrated that CD147 downregulation decreased the formation of a complex between ß-catenin and AR. It was shown that CD147 knockdown suppressed the expression of the AR target gene prostate-specific antigen and the growth of AR-positive LNCaP cells. Furthermore, inhibition of PI3K/Akt with LY294002 augmented CD147-mediated function. The present study indicates that the PI3K/Akt pathway may facilitate CD147-mediated activation of the AR pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...