Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 24: 100936, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38234459

RESUMO

Structural parameters of the implants such as shape, size, and porosity of the pores have been extensively investigated to promote bone tissue repair, however, it is unknown how the pore interconnectivity affects the bone growth behaviors in the scaffolds. Herein we systematically evaluated the effect of biodegradable bioceramics as a secondary phase filler in the macroporous networks on the mechanical and osteogenic behaviors in sparingly dissolvable bioceramic scaffolds. The pure hardystonite (HT) scaffolds with ∼550 & 800 µm in pore sizes were prepared by digital light processing, and then the Sr-doped calcium silicate (SrCSi) bioceramic slurry without and with 30 % organic porogens were intruded into the HT scaffolds with 800 µm pore size and sintered at 1150 °C. It indicated that the organic porogens could endow spherical micropores in the SrCSi filler, and the invasion of the SrCSi component could not only significantly enhance the compressive strength and modulus of the HT-based scaffolds, but also induce osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The pure HT scaffolds showed extremely slow bio-dissolution in Tris buffer after immersion for 8 weeks (∼1 % mass decay); in contrast, the SrCSi filler would readily dissolve into the aqueous medium and produced a steady mass decay (>6 % mass loss). In vivo experiments in rabbit femoral bone defect models showed that the pure HT scaffolds showed bone tissue ingrowth but the bone growth was impeded in the SrCSi-intruded scaffolds within 4 weeks; however, the group with higher porosity of SrCSi filler showed appreciable osteogenesis after 8 weeks of implantation and the whole scaffold was uniformly covered by new bone tissues after 16 weeks. These findings provide some new insights that the pore interconnectivity is not inevitable to impede bone ingrowth with the prolongation of implantation time, and such a highly biodegradable and bioactive filler intrusion strategy may be beneficial for optimizing the performances of scaffolds in bone regenerative medicine applications.

2.
Front Bioeng Biotechnol ; 11: 1260639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840661

RESUMO

Pore parameters, structural stability, and filler morphology of artificial implants are key factors influencing the process of bone tissue repair. However, the extent to which each of these factors contributes to bone formation in the preparation of porous bioceramics is currently unclear, with the two often being coupled. Herein, we prepared magnesium-doped wollastonite (Mg-CSi) scaffolds with 57% and 70% porosity (57-S and 70-S) via a 3D printing technique. Meanwhile, the bioceramic granules (57-G and 70-G) with curved pore topography (IWP) were prepared by physically disrupting the 57-S and 70-S scaffolds, respectively, and compared for in vivo osteogenesis at 4, 10, and 16 weeks. The pore parameters and the mechanical and biodegradable properties of different porous bioceramics were characterized systematically. The four groups of porous scaffolds and granules were then implanted into a rabbit femoral defect model to evaluate the osteogenic behavior in vivo. 2D/3D reconstruction and histological analysis showed that significant bone tissue production was visible in the central zone of porous granule groups at the early stage but bone tissue ingrowth was slower in the porous scaffold groups. The bone tissue regeneration and reconstruction capacity were stronger after 10 weeks, and the porous architecture of the 57-S scaffold was maintained stably at 16 weeks. These experimental results demonstrated that the structure-collapsed porous bioceramic is favorable for early-stage osteoconduction and that the 3D topological scaffolds may provide more structural stability for bone tissue growth for a long-term stage. These findings provide new ideas for the selection of different types of porous bioceramics for clinical bone repair.

3.
J Orthop Surg Res ; 15(1): 267, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677980

RESUMO

BACKGROUND: The relationship between collar design of a femoral component and iliopsoas impingement (IPI) after total hip arthroplasty (THA) is still underrecognized. The purpose of our study was to determine the possible risk factors for IPI related to the femoral component, when using a collared femoral prosthesis. METHODS: A total of 196 consecutive THA patients (206 hips) using a collared femoral prosthesis were reviewed retrospectively after exclusion of the factors related to acetabular component and femoral head. The patients were divided into +IPI and -IPI group according to the presence of IPI. Radiological evaluations were performed including femoral morphology, stem positioning, and collar protrusion length (CPL). Multivariate regression analysis was performed to assess the risk factors for IPI. RESULTS: At a minimum follow-up of 1 year, IPI was observed in 15 hips (7.3%). Dorr type C proximal femur was found in nine hips (60%) in the +IPI group and in 28 hips in the -IPI group (14.7%, p < 0.001). The mean stem anteversion in the +IPI group was significantly greater than that in the -IPI group (19.1° vs. 15.2°, p < 0.001), as well as the mean CPL (2.6 mm vs. - 0.5 mm, p < 0.001). The increased stem anteversion (OR = 1.745, p = 0.001) and CPL (OR = 13.889, p = 0.001) were potential risk factors for IPI. CONCLUSIONS: The incidence of IPI after THA is higher than expected when using a collared femoral prosthesis. Among the factors related to collared femoral prosthesis, excessively increased stem anteversion and prominent collar protrusion are independent predictors for IPI. In addition, high risk of IPI should be carefully considered in Dorr type C bone, despite that femoral morphology is not a predictive factor. LEVEL OF EVIDENCE: Level IV, clinical cohort study.


Assuntos
Artroplastia de Quadril/efeitos adversos , Artroplastia de Quadril/métodos , Fêmur/cirurgia , Prótese de Quadril/efeitos adversos , Doenças Musculares/etiologia , Complicações Pós-Operatórias/etiologia , Desenho de Prótese/efeitos adversos , Músculos Psoas , Idoso , Idoso de 80 Anos ou mais , Feminino , Fêmur/diagnóstico por imagem , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/epidemiologia , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/epidemiologia , Análise de Regressão , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...