Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Environ Qual ; 52(5): 949-959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37555696

RESUMO

Excess nutrients, such as phosphorus (P), in watersheds jeopardize water quality and trigger harmful algal blooms. Using phosphorus sorption material (PSM) to capture P from wastewater and agricultural runoff can help recover nutrients and prevent their water pollution. In this study, a novel designer biochar was generated by pyrolyzing woody biomass pretreated with a flue gas desulfurization gypsum. The removal of dissolved inorganic phosphorus (DIP) by the gypsum-incorporated designer biochar was more efficient than the gypsum, suggesting the pretreatment of biomass with the gypsum results in a synergic effect on enhancing DIP capture. The maximum P adsorption capacity of the designer biochar was more than 200 mg g-1 , which is one order of magnitude greater than that of the gypsum. This result clearly showed that the designer biochar is a better PSM to capture DIP from nutrient-contaminated water compared to the gypsum. Post-sorption characterization indicated that the sorption of DIP by the gypsum-incorporated biochar involves multiple mechanisms. The precipitation reactions of calcium (Ca) cations and P anions to form CaHPO4 and Ca3 (PO4 )2 precipitates on the highly alkaline surface of the designer biochar were identified as a main mechanism. By contrast, CaHPO4 ·2H2 O is the only precipitated product for DIP sorption by the gypsum. In addition, the initial solution pH and the coexisting bicarbonate had less effects on the DIP removal by the designer biochar in comparison with the gypsum, which further confirms that the former is an excellent PSM to capture DIP from a variety of aquatic media.


Assuntos
Sulfato de Cálcio , Carvão Vegetal , Sulfato de Cálcio/química , Carvão Vegetal/química , Fósforo/química , Agricultura , Adsorção
3.
Environ Sci Process Impacts ; 25(3): 445-460, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36692344

RESUMO

At mercury (Hg)-contaminated sites, streambank erosion can act as a main mobilizer of Hg into nearby waterbodies. Once deposited into the waters, mercury from these soils can be transformed to MeHg by microorganisms. It is therefore important to understand the solid-phase speciation of Hg in streambanks as differences in Hg speciation will have implications for Hg transport and bioavailability. In this study, we characterized Hg solid phases in Hg-contaminated soils (100-1100 mg per kg Hg) collected from the incised bank of the East Fork Poplar Creek (EFPC) in Oak Ridge, TN (USA). The analysis of the soil samples by scanning electron microscopy-energy dispersive spectroscopy indicated numerous microenvironments where Hg and sulfur (S) are co-located. According to bulk soil analyses by extended X-ray absorption fine structure spectroscopy (EXAFS), the near-neighbor Hg molecular coordination in the soils closely resembled freshly precipitated Hg sulfide (metacinnabar, HgS); however, EXAFS fits indicated the Hg in the HgS structure was undercoordinated with respect to crystalline metacinnabar. This undercoordination of Hg-S observed by spectroscopy is consistent with transmission electron microspy images showing the presence of nanocrystallites with structural defects (twinning, stacking faults, dislocations) in individual HgS-bearing particles. Although the soils were collected from exposed parts of the stream bank (i.e., open to the atmosphere), the presence of reduced forms of S and sulfate-reducing microbes suggests that biogenic sulfides promote the formation of HgS nanoparticles in these soils. Altogether, these data demonstrate the predominance of nanoparticulate HgS with crystal lattice defects in the bank soils of an industrially impacted stream. Efforts to predict the mobilization and bioavailability of Hg associated with nano-HgS forms should consider the impact of nanocrystalline lattice defects on particle surface reactivity, including Hg dissolution rates and bioavailability on Hg fate and transformations.


Assuntos
Compostos de Mercúrio , Mercúrio , Sulfetos/química , Mercúrio/química , Solo
4.
Environ Microbiol ; 24(12): 6112-6127, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36222141

RESUMO

Saline springs within the Illinois Basin result from the discharge of deep-seated evaporated seawater (brine) and likely contain diverse and complex microbial communities that are poorly understood. In this study, seven saline/mineral springs with different geochemical characteristics and salinity origins were investigated using geochemical and molecular microbiological analyses to reveal the composition of microbial communities inhabiting springs and their key controlling factors. The 16S rRNA sequencing results demonstrated that each spring harbours a unique microbial community influenced by its geochemical properties and subsurface conditions. The microbial communities in springs that originated from Cambrian/Ordovician strata, which are deep confined units that have limited recharge from overlying formations, share a greater similarity in community composition and have a higher species richness and more overlapped taxa than those that originated from shallower Pennsylvanian strata, which are subject to extensive regional surface and groundwater recharge. The microbial distribution along the spring flow paths at the surface indicates that 59.8%-94.2% of total sequences in sedimentary samples originated from spring water, highlighting the role of springs in influencing microbiota in the immediate terrestrial environment. The results indicate that the springs introduce microbiota with a high biodiversity into surface terrestrial or aquatic ecosystems, potentially affecting microbial reservoirs in downstream ecosystems.


Assuntos
Água Subterrânea , Microbiota , RNA Ribossômico 16S/genética , Salinidade , Microbiota/genética , Água Subterrânea/microbiologia , Água do Mar/microbiologia
5.
Natl Sci Rev ; 9(10): nwac128, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36196117

RESUMO

Mineral-microbe interactions play important roles in environmental change, biogeochemical cycling of elements and formation of ore deposits. Minerals provide both beneficial (physical and chemical protection, nutrients, and energy) and detrimental (toxic substances and oxidative pressure) effects to microbes, resulting in mineral-specific microbial colonization. Microbes impact dissolution, transformation and precipitation of minerals through their activity, resulting in either genetically controlled or metabolism-induced biomineralization. Through these interactions, minerals and microbes co-evolve through Earth history. Mineral-microbe interactions typically occur at microscopic scale but the effect is often manifested at global scale. Despite advances achieved through decades of research, major questions remain. Four areas are identified for future research: integrating mineral and microbial ecology, establishing mineral biosignatures, linking laboratory mechanistic investigation to field observation, and manipulating mineral-microbe interactions for the benefit of humankind.

6.
Sci Total Environ ; 812: 152308, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952054

RESUMO

Polypropylene (PP) inkjet cartridges spilled during January 2014 in the northwest Atlantic Ocean from a container ship and subsequently retrieved from beaches around Europe and the Azores along with a matching reference cartridge that had not been exposed to the environment were physically and chemically characterized. Compared with the reference, the cartridges retrieved from the marine environment exhibited considerable cracking-fracturing, discoloration, surface roughness, loss of gloss and staining. Infrared analysis revealed that weathering was highly heterogeneous, with the carbonyl index ranging from <0.1 to >0.9 over areas of sub-mm-dimensions. The high degree of weathering was partly attributed to the presence, quality, and distribution of the titanium dioxide pigment, TiO2. Thus, in the absence of sufficient protection by encapsulation or addition of antioxidants, the ultraviolet light-absorbing pigment promoted the formation of free radicals and photocatalytic oxidation. The results of this study show that consumer plastics containing TiO2 for coloration or tinting purposes, when not designed for exterior use (in the absence of encapsulation or antioxidants), may experience accelerated weathering in the marine environment, and that estimates of plastic persistence should factor in the role of additives that promote photoactivity.


Assuntos
Plásticos , Polipropilenos , Oceano Atlântico , Titânio , Tempo (Meteorologia)
7.
Sci Total Environ ; 706: 135734, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31806311

RESUMO

Biological treatment of 1,4-dioxane, a probable human carcinogen and a recalcitrant contaminant of concern, is often complicated by the presence of inhibitory co-contaminants. Due to its use as a solvent, wetting agent, and stabilizer for chlorinated solvents employed in metal vapor degreasing, 1,4-dioxane has often been found to occur with a variety of co-contaminants, including heavy metals such as hexavalent chromium [Cr(VI)]. Cr(VI) also occurs naturally in groundwater due to geological formations, but also has sources that can coincide with 1,4-dioxane from anthropogenic activities such as metal vapor degreasing. Biodegradation of 1,4-dioxane can be accomplished by microbes that use it as a source of carbon or energy as well as those that cometabolize it after growth on other organic substrates. A propanotroph, Mycobacterium austroafricanum JOB5, was grown in planktonic pure cultures and biofilms to determine its ability to cometabolize 1,4-dioxane in the presence of varying concentrations of Cr(VI). 1,4-Dioxane cometabolism by JOB5 planktonic cells was uninhibited by Cr(VI) at levels up to 10 mg/L, while biofilms were only mildly inhibited at 10 mg/L. As an important part of the biofilms commonly found in subsurface aquifers and engineered systems, extracellular polymeric substances (EPS) were found to play an important role in preventing Cr(VI) exposure to cells. We observed that soluble EPS were able to bind to Cr(VI) and theorize that biofilm-associated EPS additionally served to impede penetration of the biofilm structure by Cr(VI), thus mitigating exposure and toxicity. These findings suggest that bioremediation would be a viable treatment strategy for 1,4-dioxane-contaminated waters that contain elevated levels of Cr(VI) in natural and built environments.


Assuntos
Biodegradação Ambiental , Plâncton , Bactérias , Cromo , Dioxanos , Poluentes Químicos da Água
8.
Environ Sci Technol ; 53(5): 2426-2433, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30702880

RESUMO

In natural freshwater and sediments, mercuric mercury (Hg(II)) is largely associated with particulate minerals and organics, but it remains unclear under what conditions particulates may become a sink or a source for Hg(II) and whether the particulate-bound Hg(II) is bioavailable for microbial uptake and methylation. In this study, we investigated Hg(II) sorption-desorption characteristics on three organo-coated hematite particulates and a Hg-contaminated natural sediment and evaluated the potential of particulate-bound Hg(II) for microbial methylation. Mercury rapidly sorbed onto particulates, especially the cysteine-coated hematite and sediment, with little desorption observed (0.1-4%). However, the presence of Hg-binding ligands, such as low-molecular-weight thiols and humic acids, resulted in up to 60% of Hg(II) desorption from the Hg-laden hematite particulates but <6% from the sediment. Importantly, the particulate-bound Hg(II) was bioavailable for uptake and methylation by a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under anaerobic incubations, and the methylation rate was 4-10 times higher than the desorption rate of Hg(II). These observations suggest direct contacts and interactions between bacterial cells and the particulate-bound Hg(II), resulting in rapid exchange or uptake of Hg(II) by the bacteria. The results highlight the importance of Hg(II) partitioning at particulate-water interfaces and the role of particulates as a significant source of Hg(II) for methylation in the environment.


Assuntos
Desulfovibrio desulfuricans , Mercúrio , Compostos de Metilmercúrio , Metilação , Minerais
9.
Environ Pollut ; 243(Pt A): 573-581, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30216889

RESUMO

Biodegradation of 1,4-dioxane was examined in packed quartz and soil column flow-through systems. The inhibitory effects of co-contaminants, specifically trichloroethene (TCE), 1,1-dichloroethene (1,1-DCE), and copper (Cu2+) ions, were investigated in the columns either with or without bioaugmentation with a 1,4-dioxane degrading bacterium Pseudonocardia dioxanivorans CB1190. Results indicate that CB1190 cells readily grew and colonized in the columns, leading to significant degradation of 1,4-dioxane under oxic conditions. Degradation of 1,4-dioxane was also observed in the native soil (without bioaugmentation), which had been previously subjected to enhanced reductive dechlorination treatment for co-contaminants TCE and 1,1-DCE. Bioaugmentation of the soil with CB1190 resulted in nearly complete degradation at influent concentrations of 3-10 mg L-1 1,4-dioxane and a residence reaction time of 40-80 h, but the presence of co-contaminants, 1,1-DCE and Cu2+ ions (up to 10 mg L-1), partially inhibited 1,4-dioxane degradation in the untreated and bioaugmented soil columns. However, the inhibitory effects were much less severe in the column flow-through systems than those previously observed in planktonic cultures, which showed near complete inhibition at the same co-contaminant concentrations. These observations demonstrate a low susceptibility of soil microbes to the toxicity of 1,1-DCE and Cu2+ in packed soil flow-through systems, and thus have important implications for predicting biodegradation potential and developing sustainable, cost-effective technologies for in situ remediation of 1,4-dioxane contaminated soils and groundwater.


Assuntos
Biodegradação Ambiental/efeitos dos fármacos , Dioxanos/toxicidade , Poluentes Químicos da Água/toxicidade , Água Subterrânea/microbiologia , Halogenação , Solo/química , Tricloroetileno
10.
Environ Sci Technol ; 51(18): 10468-10475, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28806071

RESUMO

Natural dissolved organic matter (DOM) affects mercury (Hg) redox reactions and anaerobic microbial methylation in the environment. Several studies have shown that DOM can enhance Hg methylation, especially under sulfidic conditions, whereas others show that DOM inhibits Hg methylation due to strong Hg-DOM complexation. In this study, we investigated and compared the effects of DOM on Hg methylation by an iron-reducing bacterium Geobacter sulfurreducens PCA and a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under nonsulfidic conditions. The methylation experiment was performed with washed cells either in the absence or presence of DOM or glutathione, both of which form strong complexes with Hg via thiol-functional groups. DOM was found to greatly inhibit Hg methylation by G. Sulfurreducens PCA but enhance Hg methylation by D. desulfuricans ND132 cells with increasing DOM concentration. These strain-dependent opposing effects of DOM were also observed with glutathione, suggesting that thiols in DOM likely played an essential role in affecting microbial Hg uptake and methylation. Additionally, DOM and glutathione greatly decreased Hg sorption by G. sulfurreducens PCA but showed little effect on D. desulfuricans ND132 cells, demonstrating that ND132 has a higher affinity to sorb or take up Hg than the PCA strain. These observations indicate that DOM effects on Hg methylation are bacterial strain specific, depend on the DOM:Hg ratio or site-specific conditions, and may thus offer new insights into the role of DOM in methylmercury production in the environment.


Assuntos
Desulfovibrio desulfuricans , Geobacter , Mercúrio/química , Compostos de Metilmercúrio/química , Metilação
11.
Sci Adv ; 3(5): e1700041, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28580426

RESUMO

Methylmercury (CH3Hg+) is a potent neurotoxin produced by certain anaerobic microorganisms in natural environments. Although numerous studies have characterized the basis of mercury (Hg) methylation, no studies have examined CH3Hg+ degradation by methanotrophs, despite their ubiquitous presence in the environment. We report that some methanotrophs, such as Methylosinus trichosporium OB3b, can take up and degrade CH3Hg+ rapidly, whereas others, such as Methylococcus capsulatus Bath, can take up but not degrade CH3Hg+. Demethylation by M. trichosporium OB3b increases with increasing CH3Hg+ concentrations but was abolished in mutants deficient in the synthesis of methanobactin, a metal-binding compound used by some methanotrophs, such as M. trichosporium OB3b. Furthermore, addition of methanol (>5 mM) as a competing one-carbon (C1) substrate inhibits demethylation, suggesting that CH3Hg+ degradation by methanotrophs may involve an initial bonding of CH3Hg+ by methanobactin followed by cleavage of the C-Hg bond in CH3Hg+ by the methanol dehydrogenase. This new demethylation pathway by methanotrophs indicates possible broader involvement of C1-metabolizing aerobes in the degradation and cycling of toxic CH3Hg+ in the environment.


Assuntos
Compostos de Metilmercúrio/metabolismo , Methylococcus capsulatus/metabolismo , Methylosinus/metabolismo , Imidazóis/metabolismo , Metanol/metabolismo , Oligopeptídeos/metabolismo
12.
Environ Sci Technol ; 50(24): 13335-13341, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27993064

RESUMO

Microbial conversion of inorganic mercury (IHg) to methylmercury (MeHg) is a significant environmental concern because of the bioaccumulation and biomagnification of toxic MeHg in the food web. Laboratory incubation studies have shown that, despite the presence of large quantities of IHg in cell cultures, MeHg biosynthesis often reaches a plateau or a maximum within hours or a day by an as yet unexplained mechanism. Here we report that mercuric Hg(II) can be taken up rapidly by cells of Desulfovibrio desulfuricans ND132, but a large fraction of the Hg(II) is unavailable for methylation because of strong cellular sorption. Thiols, such as cysteine, glutathione, and penicillamine, added either simultaneously with Hg(II) or after cells have been exposed to Hg(II), effectively desorb or mobilize the bound Hg(II), leading to a substantial increase in MeHg production. The amount of thiol-desorbed Hg(II) is strongly correlated to the amount of MeHg produced (r = 0.98). However, cells do not preferentially take up Hg(II)-thiol complexes, but Hg(II)-ligand exchange between these complexes and the cell-associated proteins likely constrains Hg(II) uptake and methylation. We suggest that, aside from aqueous chemical speciation of Hg(II), binding and exchange of Hg(II) between cells and complexing ligands such as thiols and naturally dissolved organics in solution is an important controlling mechanism of Hg(II) bioavailability, which should be considered when predicting MeHg production in the environment.


Assuntos
Desulfovibrio desulfuricans/metabolismo , Mercúrio/química , Disponibilidade Biológica , Compostos de Metilmercúrio/metabolismo , Compostos de Sulfidrila/metabolismo , Poluentes Químicos da Água/metabolismo
13.
PLoS One ; 11(9): e0162401, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27603511

RESUMO

Heavy metals such as mercury (Hg) pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concentrations of Hg in the artificial sea water. Confocal images of untreated and treated specimens using fluorescent probes (Nile Red and Acridine Orange) provided an opportunity for visualizing the intracellular lipid accumulation and acidic compartment regulation. With increased Hg over time, we observed an increased number of lipid droplets, which may have acted as a detoxifying organelle where Hg is sequestered and biologically inactivated. Further, Hg seems to promote the proliferation of lysosomes both in terms of number and dimension that, at the highest level of Hg, resulted in cell death. We report, for the first time, the presence of Hg within the foraminiferal cell: at the basal part of pores, in the organic linings of the foramen/septa, and as cytoplasmic accumulations.


Assuntos
Compartimento Celular , Ecossistema , Foraminíferos/metabolismo , Espaço Intracelular/metabolismo , Lipídeos/análise , Lisossomos/metabolismo , Mercúrio/análise , Poluentes Químicos da Água/análise , Laranja de Acridina/análise , Poluição da Água/análise
15.
Environ Sci Technol ; 50(8): 4366-73, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27019098

RESUMO

Microbial methylation and demethylation are two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems. Although mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjiensis Bem. Here we report, for the first time, that the strain G. bemidjiensis Bem can mediate a suite of Hg transformations, including Hg(II) reduction, Hg(0) oxidation, MeHg production and degradation under anoxic conditions. Results suggest that G. bemidjiensis utilizes a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) as the major reaction product, possibly due to the presence of genes encoding homologues of an organomercurial lyase (MerB) and a mercuric reductase (MerA). In addition, the cells can strongly sorb Hg(II) and MeHg, reduce or oxidize Hg, resulting in both time and concentration-dependent Hg species transformations. Moderate concentrations (10-500 µM) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of Hg methylation and demethylation among anaerobic bacteria, thereby influencing net MeHg production in anoxic water and sediments.


Assuntos
Poluentes Ambientais/metabolismo , Geobacter/metabolismo , Mercúrio/metabolismo , Anaerobiose , Biodegradação Ambiental , Cisteína/química , Poluentes Ambientais/química , Ferro/metabolismo , Liases/metabolismo , Mercúrio/química , Metilação , Compostos de Metilmercúrio/metabolismo , Oxirredução , Oxirredutases/metabolismo
16.
Geochim Cosmochim Acta ; 148: 442-456, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26120143

RESUMO

Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to1.9 µM h-1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal sites, where the temperature may reach ∼70°C.

17.
Environ Sci Technol ; 49(9): 5493-501, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25873540

RESUMO

Biological redox cycling of structural Fe in phyllosilicates is an important but poorly understood process. The objective of this research was to study microbially mediated redox cycles of Fe in nontronite (NAu-2). During the reduction phase, structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens CN32 as mediator in bicarbonate- and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served as electron donor and nitrate as electron acceptor. Nitrate-dependent Fe(II)-oxidizing bacterium Pseudogulbenkiania sp. strain 2002 was added as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo three redox cycles without significant dissolution. Fe(II) in bioreduced samples occurred in two distinct environments, at edges and in the interior of the NAu-2 structure. Nitrate reduction to nitrogen gas was coupled with oxidation of edge-Fe(II) and part of interior-Fe(II) under both buffer conditions, and its extent and rate did not change with Fe redox cycles. These results suggest that biological redox cycling of structural Fe in phyllosilicates is a reversible process and has important implications for biogeochemical cycles of carbon, nitrogen, and other nutrients in natural environments.


Assuntos
Ferro/metabolismo , Nitratos/metabolismo , Shewanella putrefaciens/metabolismo , Compostos Férricos/química , Ferro/química , Neisseriaceae/metabolismo , Nitratos/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...