Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 6(24): 22408-16, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25496043

RESUMO

Addition of Ag is a promising way to enhance the H2 permeability of sulfur-tolerant PdCu membranes for cleanup of coal-derived hydrogen. We investigated a series of PdCuAg membranes with at least 70 atom % Pd to elucidate the interdependence between alloy structure and H2 permeability. Membranes were prepared via sequential electroless plating of Pd, Ag, and Cu onto ceramic microfiltration membranes and subsequent alloying at elevated temperatures. Alloy formation was complicated by a wide miscibility gap in the PdCuAg phase diagram at the practically feasible operation temperatures. X-ray diffraction showed that the lattice constants of the fully alloyed ternary alloys obey Vegard's law closely. In general, H2 permeation rates increased with increasing Ag and decreasing Cu content of the membranes in the investigated temperature range. Detailed examination of the permeation kinetics revealed compensation between activation energy and pre-exponential factor of the corresponding H2 permeation laws. The origin of this effect is discussed. Further analysis showed that the activation energy for H2 permeation decreases overall with increasing lattice constant of the ternary alloy. The combination of these correlations results in a structure-function relationship that will facilitate rational design of PdCuAg membranes.

2.
Phys Chem Chem Phys ; 16(46): 25330-6, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25336424

RESUMO

Higher operation temperatures benefit H2 permeability and selectivity of metal membranes and they are interesting for e.g. water gas shift and steam reforming in membrane reactors. Hence the behaviour of PdAg-ceramic composite membranes has been investigated between 823 K and 923 K. The H2 flux of membranes with less than 10 µm thick alloy layers decreased continuously with time during operation under H2 at 873 K and above. This was accompanied by a steady increase of the activation energy for H2 permeation and the growth of Ag-depleted crystallites on the membrane surface. All phenomena could be reversed through annealing under N2 at 923 K. The textural and permeability changes are consistent with a segregation mechanism starting with metal sublimation from hydrogenated PdAg layers and subsequent metal resublimation. This implies an enhancement of the yet unknown metal activities in PdAg hydride phases over metallic PdAg alloys. Ramifications for application of thin-layered, supported PdAg membranes for H2 separation above 823 K are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...