Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 267: 128926, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33243571

RESUMO

The use of stabilized/solidified (S/S) soils and sediments as sustainable construction materials is a global concern due to the potential risk of contaminant leaching including potentially toxic elements. The long-term leachability of four metals (Zn, Pb, Cd and As) in sediments mixed with OPC (Ordinary Portland Cement) and OPC/GGBS (Ground Granulated Blast Furnace Slag) binders were investigated through a combination of tank leaching tests and kinetic leaching models, with varying ranges of curing ages and ambient pH. The leaching data revealed that both binder compositions offer an excellent immobilization capacity for the four metals, while their releases are strongly pH-dependent and are a complex function of curing time. The partial replacement of OPC by GGBS is more effective for fixing Zn and As at pH of 1, Pb at pH of 7, Zn and Pb at pH of 10. Controlling leaching mechanisms and leachability indices were determined using nonlinear regression analysis and kinetic leaching models. The first-order diffusion model (FRDM) was the most applicable model for describing the leaching characteristics of these metals under the investigated cases, the leaching rate is controlled by surface wash-off initially and then by diffusion. The leachability indices indicate that the cement-slag S/S sediment can be regarded as an environmentally sustainable material with potential beneficial uses in construction.


Assuntos
Metais Pesados , Poluentes do Solo , Materiais de Construção , Metais Pesados/análise , Solo , Poluentes do Solo/análise
2.
Sci Total Environ ; 733: 138551, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32422459

RESUMO

Management strategies for the safe disposal of contaminated dredged marine sediment constitute a global-scale environmental issue. The stabilization/solidification method was investigated as a sustainable approach to the recycling of the sediment as a construction material. A systematic study of the factors affecting the mechanical performance and contaminant release was performed. The physico-chemical variables selected to assess the potential re-use of the sediment treated with Ordinary Portland cement (OPC) and Ground Granulated Blast Furnace Slag (GGBS) in an aquatic environment were: curing duration (7, 28, 56 and 98 days), curing temperature (5, 20 and 40 °C) and ambient (leachate) pH (1, 4, 7 and 10). Unconfined compressive strength (UCS) tests were conducted and extended-duration tank leaching tests were used to characterize the long-term leaching of Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Ba, Pb. The results showed that S/S methods provide excellent immobilization of metals in marine sediment at a pH range of 4 to 10. Immobilization efficiencies of >99.9% for Mn, Fe, Zn, As, Ba, Pb and >97.8% for Al, Cu and Zn are reported over 100 days. GGBS replacement is an effective way to further improve sediment properties by enhancing strength, mitigating sediment alkalization and offering a better immobilization capacity for Fe, Ni and Zn. The release of metals (Al, Mn, Cu, As, Ba and Pb) was strongly associated with a coupling effect of the physico-chemical factors, with metal-specific responses to curing temperature, curing duration and pH. Mn mobility showed a dramatic sensitivity to ambient pH while Ba was less pH-dependent. Al release is related to strength and leached out by dissolution in all situations considered. Considering that dredged marine sediments may contain multiple metal contaminants which exhibit individual responses to remediation, treatment with GGBS may be considered a potentially suitable management option.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...