Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35174370

RESUMO

Editing operations such as cut, copy, paste, and correcting errors in typed text are often tedious and challenging to perform on smartphones. In this paper, we present VT, a voice and touch-based multi-modal text editing and correction method for smartphones. To edit text with VT, the user glides over a text fragment with a finger and dictates a command, such as "bold" to change the format of the fragment, or the user can tap inside a text area and speak a command such as "highlight this paragraph" to edit the text. For text correcting, the user taps approximately at the area of erroneous text fragment and dictates the new content for substitution or insertion. VT combines touch and voice inputs with language context such as language model and phrase similarity to infer a user's editing intention, which can handle ambiguities and noisy input signals. It is a great advantage over the existing error correction methods (e.g., iOS's Voice Control) which require precise cursor control or text selection. Our evaluation shows that VT significantly improves the efficiency of text editing and text correcting on smartphones over the touch-only method and the iOS's Voice Control method. Our user studies showed that VT reduced the text editing time by 30.80%, and text correcting time by 29.97% over the touch-only method. VT reduced the text editing time by 30.81%, and text correcting time by 47.96% over the iOS's Voice Control method.

2.
Proc (Graph Interface) ; 2021: 231-240, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-35185272

RESUMO

Selecting targets accurately and quickly with eye-gaze input remains an open research question. In this paper, we introduce BayesGaze, a Bayesian approach of determining the selected target given an eye-gaze trajectory. This approach views each sampling point in an eye-gaze trajectory as a signal for selecting a target. It then uses the Bayes' theorem to calculate the posterior probability of selecting a target given a sampling point, and accumulates the posterior probabilities weighted by sampling interval to determine the selected target. The selection results are fed back to update the prior distribution of targets, which is modeled by a categorical distribution. Our investigation shows that BayesGaze improves target selection accuracy and speed over a dwell-based selection method, and the Center of Gravity Mapping (CM) method. Our research shows that both accumulating posterior and incorporating the prior are effective in improving the performance of eye-gaze based target selection.

4.
Diagn Pathol ; 15(1): 100, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32723384

RESUMO

BACKGROUND: Multiplex immunohistochemistry (mIHC) permits the labeling of six or more distinct cell types within a single histologic tissue section. The classification of each cell type requires detection of the unique colored chromogens localized to cells expressing biomarkers of interest. The most comprehensive and reproducible method to evaluate such slides is to employ digital pathology and image analysis pipelines to whole-slide images (WSIs). Our suite of deep learning tools quantitatively evaluates the expression of six biomarkers in mIHC WSIs. These methods address the current lack of readily available methods to evaluate more than four biomarkers and circumvent the need for specialized instrumentation to spectrally separate different colors. The use case application for our methods is a study that investigates tumor immune interactions in pancreatic ductal adenocarcinoma (PDAC) with a customized mIHC panel. METHODS: Six different colored chromogens were utilized to label T-cells (CD3, CD4, CD8), B-cells (CD20), macrophages (CD16), and tumor cells (K17) in formalin-fixed paraffin-embedded (FFPE) PDAC tissue sections. We leveraged pathologist annotations to develop complementary deep learning-based methods: (1) ColorAE is a deep autoencoder which segments stained objects based on color; (2) U-Net is a convolutional neural network (CNN) trained to segment cells based on color, texture and shape; and ensemble methods that employ both ColorAE and U-Net, collectively referred to as (3) ColorAE:U-Net. We assessed the performance of our methods using: structural similarity and DICE score to evaluate segmentation results of ColorAE against traditional color deconvolution; F1 score, sensitivity, positive predictive value, and DICE score to evaluate the predictions from ColorAE, U-Net, and ColorAE:U-Net ensemble methods against pathologist-generated ground truth. We then used prediction results for spatial analysis (nearest neighbor). RESULTS: We observed that (1) the performance of ColorAE is comparable to traditional color deconvolution for single-stain IHC images (note: traditional color deconvolution cannot be used for mIHC); (2) ColorAE and U-Net are complementary methods that detect 6 different classes of cells with comparable performance; (3) combinations of ColorAE and U-Net into ensemble methods outperform using either ColorAE and U-Net alone; and (4) ColorAE:U-Net ensemble methods can be employed for detailed analysis of the tumor microenvironment (TME). We developed a suite of scalable deep learning methods to analyze 6 distinctly labeled cell populations in mIHC WSIs. We evaluated our methods and found that they reliably detected and classified cells in the PDAC tumor microenvironment. We also present a use case, wherein we apply the ColorAE:U-Net ensemble method across 3 mIHC WSIs and use the predictions to quantify all stained cell populations and perform nearest neighbor spatial analysis. Thus, we provide proof of concept that these methods can be employed to quantitatively describe the spatial distribution immune cells within the tumor microenvironment. These complementary deep learning methods are readily deployable for use in clinical research studies.


Assuntos
Biomarcadores Tumorais/análise , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imuno-Histoquímica/métodos , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Humanos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...