Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virulence ; 15(1): 2350893, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38725096

RESUMO

Coxiella burnetii (C. burnetii) is the causative agent of Q fever, a zoonotic disease. Intracellular replication of C. burnetii requires the maturation of a phagolysosome-like compartment known as the replication permissive Coxiella-containing vacuole (CCV). Effector proteins secreted by the Dot/Icm secretion system are indispensable for maturation of a single large CCV by facilitating the fusion of promiscuous vesicles. However, the mechanisms of CCV maintenance and evasion of host cell clearance remain to be defined. Here, we show that C. burnetii secreted Coxiella vacuolar protein E (CvpE) contributes to CCV biogenesis by inducing lysosome-like vacuole (LLV) enlargement. LLV fission by tubulation and autolysosome degradation is impaired in CvpE-expressing cells. Subsequently, we found that CvpE suppresses lysosomal Ca2+ channel transient receptor potential channel mucolipin 1 (TRPML1) activity in an indirect manner, in which CvpE binds phosphatidylinositol 3-phosphate [PI(3)P] and perturbs PIKfyve activity in lysosomes. Finally, the agonist of TRPML1, ML-SA5, inhibits CCV biogenesis and C. burnetii replication. These results provide insight into the mechanisms of CCV maintenance by CvpE and suggest that the agonist of TRPML1 can be a novel potential treatment that does not rely on antibiotics for Q fever by enhancing Coxiella-containing vacuoles (CCVs) fission.


Assuntos
Proteínas de Bactérias , Coxiella burnetii , Lisossomos , Fosfatidilinositol 3-Quinases , Fosfatos de Fosfatidilinositol , Canais de Potencial de Receptor Transitório , Vacúolos , Animais , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Coxiella burnetii/metabolismo , Coxiella burnetii/crescimento & desenvolvimento , Coxiella burnetii/genética , Células HeLa , Interações Hospedeiro-Patógeno , Lisossomos/metabolismo , Lisossomos/microbiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Febre Q/microbiologia , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética , Vacúolos/microbiologia , Vacúolos/metabolismo
2.
Cell Rep Med ; 5(5): 101543, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38697101

RESUMO

Cognitive impairment in the elderly is associated with alterations in bile acid (BA) metabolism. In this study, we observe elevated levels of serum conjugated primary bile acids (CPBAs) and ammonia in elderly individuals, mild cognitive impairment, Alzheimer's disease, and aging rodents, with a more pronounced change in females. These changes are correlated with increased expression of the ileal apical sodium-bile acid transporter (ASBT), hippocampal synapse loss, and elevated brain CPBA and ammonia levels in rodents. In vitro experiments confirm that a CPBA, taurocholic acid, and ammonia induced synaptic loss. Manipulating intestinal BA transport using ASBT activators or inhibitors demonstrates the impact on brain CPBA and ammonia levels as well as cognitive decline in rodents. Additionally, administration of an intestinal BA sequestrant, cholestyramine, alleviates cognitive impairment, normalizing CPBAs and ammonia in aging mice. These findings highlight the potential of targeting intestinal BA absorption as a therapeutic strategy for age-related cognitive impairment.


Assuntos
Envelhecimento , Amônia , Ácidos e Sais Biliares , Disfunção Cognitiva , Absorção Intestinal , Animais , Ácidos e Sais Biliares/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Absorção Intestinal/efeitos dos fármacos , Masculino , Feminino , Humanos , Camundongos , Envelhecimento/metabolismo , Amônia/metabolismo , Idoso , Camundongos Endogâmicos C57BL , Resina de Colestiramina/farmacologia , Simportadores/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Ratos , Idoso de 80 Anos ou mais
3.
Cell Metab ; 36(5): 1000-1012.e6, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38582087

RESUMO

The gut-brain axis is implicated in depression development, yet its underlying mechanism remains unclear. We observed depleted gut bacterial species, including Bifidobacterium longum and Roseburia intestinalis, and the neurotransmitter homovanillic acid (HVA) in individuals with depression and mouse depression models. Although R. intestinalis does not directly produce HVA, it enhances B. longum abundance, leading to HVA generation. This highlights a synergistic interaction among gut microbiota in regulating intestinal neurotransmitter production. Administering HVA, B. longum, or R. intestinalis to mouse models with chronic unpredictable mild stress (CUMS) and corticosterone (CORT)-induced depression significantly improved depressive symptoms. Mechanistically, HVA inhibited synaptic autophagic death by preventing excessive degradation of microtubule-associated protein 1 light chain 3 (LC3) and SQSTM1/p62 proteins, protecting hippocampal neurons' presynaptic membrane. These findings underscore the role of the gut microbial metabolism in modulating synaptic integrity and provide insights into potential novel treatment strategies for depression.


Assuntos
Depressão , Microbioma Gastrointestinal , Ácido Homovanílico , Camundongos Endogâmicos C57BL , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Depressão/tratamento farmacológico , Depressão/metabolismo , Masculino , Humanos , Ácido Homovanílico/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Feminino
4.
Zool Res ; 45(2): 429-438, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485510

RESUMO

The Chinese tree shrew ( Tupaia belangeri chinensis), a member of the mammalian order Scandentia, exhibits considerable similarities with primates, including humans, in aspects of its nervous, immune, and metabolic systems. These similarities have established the tree shrew as a promising experimental model for biomedical research on cancer, infectious diseases, metabolic disorders, and mental health conditions. Herein, we used meta-transcriptomic sequencing to analyze plasma, as well as oral and anal swab samples, from 105 healthy asymptomatic tree shrews to identify the presence of potential zoonotic viruses. In total, eight mammalian viruses with complete genomes were identified, belonging to six viral families, including Flaviviridae, Hepeviridae, Parvovirinae, Picornaviridae, Sedoreoviridae, and Spinareoviridae. Notably, the presence of rotavirus was recorded in tree shrews for the first time. Three viruses - hepacivirus 1, parvovirus, and picornavirus - exhibited low genetic similarity (<70%) with previously reported viruses at the whole-genome scale, indicating novelty. Conversely, three other viruses - hepacivirus 2, hepatovirus A and hepevirus - exhibited high similarity (>94%) to known viral strains. Phylogenetic analyses also revealed that the rotavirus and mammalian orthoreovirus identified in this study may be novel reassortants. These findings provide insights into the diverse viral spectrum present in captive Chinese tree shrews, highlighting the necessity for further research into their potential for cross-species transmission.


Assuntos
Tupaia , Vírus , Animais , Filogenia , Primatas , Musaranhos , Tupaia/fisiologia , Tupaiidae
5.
Microbiol Spectr ; 12(4): e0369523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38358243

RESUMO

Rickettsia rickettsii (R. rickettsii), the causative agent of Rocky Mountain spotted fever (RMSF), is the most pathogenic member among Rickettsia spp. Previous studies have shown that tripartite motif-containing 56 (TRIM56) E3 ligase-induced ubiquitination of STING is important for cytosolic DNA sensing and type I interferon production to induce anti-DNA viral immunity, but whether it affects intracellular replication of R. rickettsii remains uncharacterized. Here, we investigated the effect of TRIM56 on HeLa and THP-1 cells infected with R. rickettsii. We found that the expression of TRIM56 was upregulated in the R. rickettsii-infected cells, and the overexpression of TRIM56 inhibited the intracellular replication of R. rickettsii, while R. rickettsii replication was enhanced in the TRIM56-silenced host cells with the reduced phosphorylation of IRF3 and STING and the increased production of interferon-ß. In addition, the mutation of the TRIM56 E3 ligase catalytic site impairs the inhibitory function against R. rickettsii in HeLa cells. Altogether, our study discovers that TRIM56 is a host restriction factor of R. rickettsii by regulating the cGAS-STING-mediated signaling pathway. This study gives new evidence for the role of TRIM56 in the innate immune response against intracellular bacterial infection and provides new therapeutic targets for RMSF. IMPORTANCE: Given that Rickettsia rickettsii (R. rickettsii) is the most pathogenic member within the Rickettsia genus and serves as the causative agent of Rocky Mountain spotted fever, there is a growing need to explore host targets. In this study, we examined the impact of host TRIM56 on R. rickettsii infection in HeLa and THP-1 cells. We observed a significant upregulation of TRIM56 expression in R. rickettsii-infected cells. Remarkably, the overexpression of TRIM56 inhibited the intracellular replication of R. rickettsii, while silencing TRIM56 enhanced bacterial replication accompanied by reduced phosphorylation of IRF3 and STING, along with increased interferon-ß production. Notably, the mutation of the TRIM56's E3 ligase catalytic site did not impede R. rickettsii replication in HeLa cells. Collectively, our findings provide novel insights into the role of TRIM56 as a host restriction factor against R. rickettsii through the modulation of the cGAS-STING signaling pathway.


Assuntos
Interferon Tipo I , Febre Maculosa das Montanhas Rochosas , Humanos , Rickettsia rickettsii/metabolismo , Células HeLa , Ubiquitina-Proteína Ligases/genética , Interferon beta/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas com Motivo Tripartido/genética
6.
Virus Res ; 341: 199313, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38244614

RESUMO

Human immunodeficiency virus-1 (HIV-1) infection can cause chronic activation, exhaustion, and anergy of the immune system. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is an immune checkpoint molecule, which plays an important role in immune homeostasis and disease. CTLA-4 expression is elevated in HIV-1-infected patients and is associated with disease progression. However, the mechanism controlling expression of CTLA-4 in HIV-1 infection is poorly characterized. In this study, we used a SIV-infected Chinese rhesus macaque (ChRM) model to explore CTLA-4 expression in SIV infection. Results showed that SIV infection significantly increased CTLA-4 expression in all T cell subsets, especially central memory T cells. CTLA-4+CD4+ T cell frequency was significantly associated with disease progression markers. Activation of the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway regulated CTLA-4 expression in CD4+T cells, as confirmed by stimulation with dibutyryl cyclic adenosine monophosphate, forskolin, and 3-isobutyl-1-methylxanthine, and inhibition with H-89 ex vivo. Simultaneously, cAMP concentration in PBMCs and PKA activity in both PBMCs and CD4+ T cells were increased in acute SIV-infected ChRMs, accompanied by an increase in adenylate cyclase 6 expression and a decrease in cAMP-phosphodiesterase 3A (PDE3A), PDE4B, and PDE5A expression in PBMCs. In addition, selective inhibition of PDE4B and PDE5A activity enhanced CTLA-4 expression in CD4+ T cells. These results suggest that SIV infection alters cAMP metabolism and increases cAMP-PKA signaling pathway activation, which up-regulates the expression of CTLA-4 in acute SIVmac239-infected ChRMs. Thus, regulation of the cAMP-PKA signaling pathway may be a potential strategy for the restoration of T cell function and therapy for AIDS.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Linfócitos T CD4-Positivos , Macaca mulatta , Vírus da Imunodeficiência Símia/fisiologia , Antígeno CTLA-4/genética , Regulação para Cima , Progressão da Doença , Transdução de Sinais , Monofosfato de Adenosina
7.
J Environ Manage ; 351: 119862, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142599

RESUMO

Continuous nitrogen (N) loading alters plant growth and subsequently has the potential to impact soil organic carbon (SOC) accumulation in salt marshes. However, the knowledge gap of photosynthesized carbon (C) allocation in plant-soil-microbial systems hampers the quantification of C fluxes and the clarification of the mechanisms controlling the C budget under N loading in salt marsh ecosystems. To address this, we conducted an N fertilization field observation combined with a 5 h 13C-pulse labeling experiment in a salt marsh dominated by Suaeda. salsa (S. salsa) in the Yellow River Delta (YRD), China. N fertilization increased net 13C assimilation of S. Salsa by 277.97%, which was primarily allocated to aboveground biomass and SOC. However, N fertilization had little effect on 13C allocation to belowground biomass. Correlation analysis showed that 13C incorporation in soil was significantly and linearly correlated with 13C incorporation in shoots rather than in roots both in a 0 N (0 g N m-2 yr-1) and +N (20 g N m-2 yr-1) group. The results suggested that SOC increase under N fertilization was mainly due to an increased C assimilation rate and more efficient downward transfer of photosynthesized C. In addition, N fertilization strongly improved the 13C amounts in the chloroform-labile SOC component by 295.26%. However, the absolute increment of newly fix 13C mainly existed in the form of residual SOC, which had more tendency for burial in the soil. Thus, N fertilization enhanced SOC accumulation although C loss increased via belowground respiration. These results have important implications for predicting the carbon budget under further human-induced N loading.


Assuntos
Carbono , Nitrogênio , Humanos , Carbono/metabolismo , Nitrogênio/análise , Áreas Alagadas , Ecossistema , Solo , Fertilização
8.
J Hazard Mater ; 465: 133337, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38142656

RESUMO

The distributions and toxicities of the pollutants benzothiazoles (BTHs), benzotriazoles (BTRs), and benzotriazole ultraviolet stabilizers (BUVs) have attracted much attention, but most research has focused on freshwater environments and few have examined their levels in marine environments. This study, for the first time, investigated the spatial and temporal variability and ecological risks of BTHs, BTRs and BUVs in the Yangtze River estuary and its adjacent area, and further elucidated how environmental factors influence the transport of these contaminants. The concentrations of BTHs, BTRs, and BUVs in seawater showed significant seasonal variability, with the highest concentrations in summer, followed by autumn, and then winter-spring. The spatiotemporal variability in BTHs, BTRs and BUVs in the seawater and sediments samples showed decreasing trends from nearshore to offshore, reflecting the influence of river discharge. Marine debris and continuous discharge from cities were responsible for the high detection frequency of these contaminants in the YRE and its adjacent area. Furthermore, the moderate risk from the presence of BTHs, BTRs, and BUVs as they accumulate in sediments should not be ignored. Our study provides new insights into the fate and ecological risk of BTHs, BTRs, and BUVs in the estuary.

9.
Cell Metab ; 35(10): 1752-1766.e8, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37591244

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is regarded as a pandemic that affects about a quarter of the global population. Recently, host-gut microbiota metabolic interactions have emerged as distinct mechanistic pathways implicated in the development of NAFLD. Here, we report that a group of gut microbiota-modified bile acids (BAs), hyodeoxycholic acid (HDCA) species, are negatively correlated with the presence and severity of NAFLD. HDCA treatment has been shown to alleviate NAFLD in multiple mouse models by inhibiting intestinal farnesoid X receptor (FXR) and upregulating hepatic CYP7B1. Additionally, HDCA significantly increased abundances of probiotic species such as Parabacteroides distasonis, which enhances lipid catabolism through fatty acid-hepatic peroxisome proliferator-activated receptor alpha (PPARα) signaling, which in turn upregulates hepatic FXR. These findings suggest that HDCA has therapeutic potential for treating NAFLD, with a unique mechanism of simultaneously activating hepatic CYP7B1 and PPARα.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo , Fígado/metabolismo , Ácido Desoxicólico/metabolismo , Ácido Desoxicólico/uso terapêutico , Ácidos e Sais Biliares/metabolismo
11.
Water Res ; 242: 120246, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348421

RESUMO

Climate warming has substantial influences on plant water-use efficiency (PWUE), which is defined as the ratio of plant CO2 uptake to water loss and is central to the cycles of carbon and water in ecosystems. However, it remains uncertain how does climate warming affect PWUE in wetland ecosystems, especially those with seasonally alternating water availability during the growing season. In this study, we used a continuous 10-year (2011-2020) eddy covariance (EC) dataset from a seasonal hydroperiod wetland coupled with a 15-year (2003-2017) satellite-based dataset (called PML-V2) and an in situ warming experiment to examine the climate warming impacts on wetland PWUE. The 10-year EC observational results revealed that rising temperatures had significant negative impacts on the interannual variations in wetland PWUE, and increased transpiration (Et) rather than changes in gross primary productivity (GPP) dominated these negative impacts. Furthermore, the 15-year satellite-based evidence confirmed that, in the study region, climate warming had significant negative consequences for the interannual variations in wetland PWUE by enhancing wetland Et. Lastly, at the leaf-scale, the light response curves of leaf photosynthesis, leaf Et, and leaf-scale PWUE indicated that wetland plants need to consume more water during the photosynthesis process under warmer conditions. These findings provide a fresh perspective on how climate warming influences carbon and water cycles in wetland ecosystems.


Assuntos
Ecossistema , Áreas Alagadas , Estações do Ano , Água , Dióxido de Carbono , Plantas , Carbono , Mudança Climática
12.
Glob Chang Biol ; 29(8): 2301-2312, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36597706

RESUMO

The effects in field manipulation experiments are strongly influenced by amplified interannual variation in ambient climate as the experimental duration increases. Soil respiration (SR), as an important part of the carbon cycle in terrestrial ecosystems, is sensitive to climate changes such as temperature and precipitation changes. A growing body of evidence has indicated that ambient climate affects the temperature sensitivity of SR, which benchmarks the strength of terrestrial soil carbon-climate feedbacks. However, whether SR sensitivity to precipitation changes is influenced by ambient climate is still not clear. In addition, the mechanism driving the above phenomenon is still poorly understood. Here, a long-term field manipulation experiment with five precipitation treatments (-60%, -40%, +0%, +40%, and +60% of annual precipitation) was conducted in a marsh in the Yellow River Delta, China, which is sensitive to soil drying-wetting cycle caused by precipitation changes. Results showed that SR increased exponentially along the experimental precipitation gradient each year and the sensitivity of SR (standardized by per 100 mm change in precipitation under precipitation treatments) exhibited significant interannual variation from 2016 to 2021. In addition, temperature, net radiation, and ambient precipitation all exhibited dramatic interannual variability; however, only ambient precipitation had a significant negative correlation with SR sensitivity. Moreover, the sensitivity of SR was significantly positively related to the sensitivity of belowground biomass (BGB) across 6 years. Structural equation modeling and regression analysis also showed that precipitation treatments significantly affected SR and its autotrophic and heterotrophic components by altering BGB. Our study demonstrated that ambient precipitation determines the sensitivity of SR to precipitation treatments in marshes. The findings underscore the importance of ambient climate in regulating ecosystem responses in long-term field manipulation experiments.


Assuntos
Ecossistema , Áreas Alagadas , Solo/química , Biomassa , Respiração , Mudança Climática
13.
Environ Sci Pollut Res Int ; 30(15): 45315-45330, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36702982

RESUMO

Benzotriazoles (BTRs), benzothiazoles (BTHs), and benzotriazole ultraviolet absorbers (BUVs) are common products in plastic rubber and personal care products. Due to their toxicity and bioaccumulation, they have been identified as emerging contaminants (ECs) in the environment. Solid-phase microextraction (SPME) and solid-phase extraction (SPE) combined with gas chromatography-mass spectrometry (GC-MS) were used for the enrichment and detection of the contaminants in seawater and sediment, respectively. The conditions of SPE and SPME were optimized in terms of material, temperature, time, pH, ionic strength, extraction solvent, and elution solvent. Although SPME requires a small sample volume, it is not reliable for the extraction efficiency and reproducibility of BTHs, BTRs, and BUVs in seawater. However, the precision of SPE-GC-MS for the determination of BTHs, BTRs, and BUVs was around 10%, with recoveries of 67.40-102.3% and 77.35-101.8% in seawater and sediment, respectively. The limits of detection of 14 contaminants in seawater and sediment were 0.03-0.47 ng/L and 0.01-0.58 ng/g, respectively. Secondly, BTHs, BTRs, and BUVs were detected with low ecological risk when SPE-GC-MS was applied to the analysis of seawater and sediment samples from the Yangtze estuary and its adjacent areas. The SPE-GC-MS was highly precise with lower detection limits relative to previous studies and thus was able to meet the requirements for the detection of BTHs, BTRs, and BUVs in seawater and sediments.


Assuntos
Benzotiazóis , Poluentes Químicos da Água , Cromatografia Gasosa-Espectrometria de Massas/métodos , Benzotiazóis/química , Reprodutibilidade dos Testes , Extração em Fase Sólida , Solventes/análise , Poluentes Químicos da Água/análise
14.
Front Cell Infect Microbiol ; 13: 1336600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38282619

RESUMO

Coxiella burnetii is an obligate intracellular bacterium that causes Q fever, a zoonotic disease typically manifests as a severe flu-illness. After invading into the host cells, C. burnetii delivers effectors to regulate the vesicle trafficking and fusion events to form a large and mature Coxiella-containing vacuole (CCV), providing sufficient space and nutrition for its intracellular growth and proliferation. Lysosomal trafficking regulator (LYST) is a member of the Beige and Chediak-Higashi syndrome (BEACH) family, which regulates the transport of vesicles to lysosomes and regulates TLR signaling pathway, but the effect of LYST on C. burnetii infection is unclear. In this study, a series of experiments has been conducted to investigate the influence of LYST on intracellular growth of C. burnetii. Our results showed that lyst transcription was up-regulated in the host cells after C. burnetii infection, but there is no significant change in lyst expression level after infection with the Dot/Icm type IV secretion system (T4SS) mutant strain, while CCVs expansion and significantly increasing load of C. burnetii appeared in the host cells with a silenced lyst gene, suggesting LYST inhibits the intracellular proliferation of C. burnetii by reducing CCVs size. Then, the size of CCVs and the load of C. burnetii in the HeLa cells pretreated with E-64d were significantly decreased. In addition, the level of iNOS was decreased significantly in LYST knockout THP-1 cells, which was conducive to the intracellular replication of C. burnetii. This data is consistent with the phenotype of L-NMMA-treated THP-1 cells infected with C. burnetii. Our results revealed that the upregulation of lyst transcription after infection is due to effector secretion of C. burnetii and LYST inhibit the intracellular replication of C. burnetii by reducing the size of CCVs and inducing nos2 expression.


Assuntos
Coxiella burnetii , Febre Q , Proteínas de Transporte Vesicular , Humanos , Coxiella burnetii/patogenicidade , Células HeLa , Interações Hospedeiro-Patógeno/genética , Lisossomos/metabolismo , Febre Q/microbiologia , Vacúolos/microbiologia , Células THP-1 , Proteínas de Transporte Vesicular/genética , Óxido Nítrico Sintase Tipo II/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-36231483

RESUMO

This paper employs the slack-based model directional distance function to measure the green total factor productivity of each city, using the panel data of 284 prefecture-level cities in China from 2004 to 2019 and considering the unexpected output. The results are as follows: ① Foreign direct investment significantly suppresses the improvement of urban green total factor productivity, and the negative impact on the green technology progress index is the main reason to inhibit the increase of the green total factor productivity. The results are still significant through a series of robustness tests such as replacing variables and eliminating outliers; the positive intermediary effect of scientific and technological innovation exists, and the Sobel test and bootstrap random sampling test are passed. The upgrading of industrial structure has a positive regulating effect on the improvement of urban green total factor productivity. ② The impact of foreign direct investment on urban green total factor productivity has regional heterogeneity. The inhibitory effect of foreign direct investment on resource-based cities and non-coastal cities is greater than that on non-resource-based cities and coastal cities, and the negative impact on China-Europe train opening cities is greater than that on non-opening cities. Accordingly, the paper puts forward policy suggestions from the aspects of improving the quality of foreign direct investment and implementing differentiated management.


Assuntos
Desenvolvimento Econômico , Investimentos em Saúde , China , Cidades , Eficiência , Internacionalidade
16.
PLoS Pathog ; 18(7): e1010660, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35816513

RESUMO

Coxiella burnetii is the etiological agent of the zoonotic disease Q fever, which is featured by its ability to replicate in acid vacuoles resembling the lysosomal network. One key virulence determinant of C. burnetii is the Dot/Icm system that transfers more than 150 effector proteins into host cells. These effectors function to construct the lysosome-like compartment permissive for bacterial replication, but the functions of most of these effectors remain elusive. In this study, we used an affinity tag purification mass spectrometry (AP-MS) approach to generate a C. burnetii-human protein-protein interaction (PPI) map involving 53 C. burnetii effectors and 3480 host proteins. This PPI map revealed that the C. burnetii effector CBU0425 (designated CirB) interacts with most subunits of the 20S core proteasome. We found that ectopically expressed CirB inhibits hydrolytic activity of the proteasome. In addition, overexpression of CirB in C. burnetii caused dramatic inhibition of proteasome activity in host cells, while knocking down CirB expression alleviated such inhibitory effects. Moreover, we showed that a region of CirB that spans residues 91-120 binds to the proteasome subunit PSMB5 (beta 5). Finally, PSMB5 knockdown promotes C. burnetii virulence, highlighting the importance of proteasome activity modulation during the course of C. burnetii infection.


Assuntos
Coxiella burnetii , Febre Q , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Mapas de Interação de Proteínas , Febre Q/metabolismo , Vacúolos/metabolismo
17.
Bioengineered ; 13(6): 14125-14137, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730472

RESUMO

Temozolomide (TMZ) is the primary chemotherapeutic drug for treating glioblastoma (GBM); however, the final clinical outcome is considerably limited by the poor response and resistance to TMZ. Although autophagy is thought to be associated with chemotherapy resistance and cancer cell survival, the precise molecular mechanisms underlying this process remain elusive. The suppressor of cytokine signaling (SOCS) family is widely distributed in vivo and exerts a range of effects on tumors; however, the expression pattern and role of SOCS in GBM remains unknown. In this study, we determined that high SOCS5 expression level was associated with poor prognosis and TMZ resistance in GBM. TMZ induced an increase in SOCS5 expression level and upregulated autophagy during the acquisition of drug resistance. The observed increase in the extent of autophagy was mediated by SOCS5. Mechanistically, SOCS5 enhances the transcription of Bcl-2. Knockdown of SOCS5 inhibited TMZ chemoresistance in GBM cells through the inhibition of Bcl-2 recruited autophagy; upregulation of Bcl-2 blocked this effect. In summary, our findings revealed the involvement and underlying mechanism of SOCS5 in TMZ resistance. SOCS5 plays a critical role in GBM chemoresistance and may serve as a novel prognostic marker and therapeutic target for chemotherapeutically treating drug-resistant GBM.


Assuntos
Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Autofagia/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/farmacologia , Temozolomida/farmacologia
18.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(5): 391-399, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35603646

RESUMO

Objective To investigate the dynamic changes of IL-10 secretion B cells (B10 cells) in SIVmac239-infected Rhesus macaques and the effects of B10 cells in acquired immunodeficiency syndrome progression. Methods Flow cytometry was applied to quantify CD4+ and CD8+ T lymphocytes, B cells number and the ratio of B10 cells, HLA-DR and ki67 in SIVmac39-infected Rhesus macaques. Real-time quantitative PCR was performed to detect SIV RNA levels and mRNA levels of IL-10, tumor necrosis factor-α(TNF-α) and IL-6. Dynamic changes of B10 cells in SIVmac239-infected Rhesus macaques and correlation analysis was performed with SPSS 20.0. Results SIV led to the reduction of B cells number, and comparatively increased activation and proliferation of B cells. Besides, it also caused an increase of B10 cells ratio in Rhesus macaques. No significant correlation was found between B10 cells ratio and other indicators (including CD4+ T cells number, TNF-α mRNA levels, ki67+CD4+T cells ratio, CTLA4+CD4+T cells ratio and CD4+ T cells function) in SIV-infected acute phase. However, B10 cells ratio and other indicators were in significantly negative correlation, while B10 cells ratio and SIV RNA levels were in significantly positive correlation in chronic phase. Meanwhile, no significant correlation was found between B10 cells ratio and CD8+ T relative indicator. Conclusion In chronic phase of SIV-infection, when B10 cells inhibits inflammation response and increases CD4+ T cells lose, virus replication gets uncontrolled and consequently leads to accelerated disease progression.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Progressão da Doença , HIV-1/genética , Interleucina-10/genética , Antígeno Ki-67/genética , Macaca mulatta/genética , RNA , RNA Mensageiro , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/genética , Fator de Necrose Tumoral alfa/genética , Carga Viral
19.
Infect Immun ; 90(6): e0001622, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35587202

RESUMO

Coxiella burnetii, the causative agent of zoonotic Q fever, is characterized by replicating inside the lysosome-derived Coxiella-containing vacuole (CCV) in host cells. Some effector proteins secreted by C. burnetii have been reported to be involved in the manipulation of autophagy to facilitate the development of CCVs and bacterial replication. Here, we found that the Coxiella plasmid effector B (CpeB) localizes on vacuole membrane targeted by LC3 and LAMP1 and promotes LC3-II accumulation. Meanwhile, the C. burnetii strain lacking the QpH1 plasmid induced less LC3-II accumulation, which was accompanied by smaller CCVs and lower bacterial loads in THP-1 cells. Expression of CpeB in the strain lacking QpH1 led to restoration in LC3-II accumulation but had no effect on the smaller CCV phenotype. In the severe combined immune deficiency (SCID) mouse model, infections with the strain expressing CpeB led to significantly higher bacterial burdens in the spleen and liver than its parent strain devoid of QpH1. We also found that CpeB targets Rab11a to promote LC3-II accumulation. Intratracheally inoculated C. burnetii resulted in lower bacterial burdens and milder lung lesions in Rab11a conditional knockout (Rab11a-/- CKO) mice. Collectively, these results suggest that CpeB promotes C. burnetii virulence by inducing LC3-II accumulation via a pathway involving Rab11a.


Assuntos
Coxiella burnetii , Febre Q , Imunodeficiência Combinada Severa , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Camundongos , Camundongos SCID , Plasmídeos , Febre Q/microbiologia , Imunodeficiência Combinada Severa/metabolismo , Vacúolos/microbiologia , Virulência
20.
Nat Commun ; 13(1): 2060, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440584

RESUMO

Calorie restriction (CR) and fasting are common approaches to weight reduction, but the maintenance is difficult after resuming food consumption. Meanwhile, the gut microbiome associated with energy harvest alters dramatically in response to nutrient deprivation. Here, we reported that CR and high-fat diet (HFD) both remodeled the gut microbiota with similar microbial composition, Parabacteroides distasonis was most significantly decreased after CR or HFD. CR altered microbiota and reprogramed metabolism, resulting in a distinct serum bile acid profile characterized by depleting the proportion of non-12α-hydroxylated bile acids, ursodeoxycholic acid and lithocholic acid. Downregulation of UCP1 expression in brown adipose tissue and decreased serum GLP-1 were observed in the weight-rebound mice. Moreover, treatment with Parabacteroides distasonis or non-12α-hydroxylated bile acids ameliorated weight regain via increased thermogenesis. Our results highlighted the gut microbiota-bile acid crosstalk in rebound weight gain and Parabacteroides distasonis as a potential probiotic to prevent rapid post-CR weight gain.


Assuntos
Microbioma Gastrointestinal , Animais , Bacteroidetes , Ácidos e Sais Biliares , Restrição Calórica , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...