Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 94: 279-287, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30933836

RESUMO

Diabetic foot is a common and serious complication of diabetes, largely due to sensory neuropathy and excessive mechanical stresses. Studies have shown that reducing the contact pressure can effectively lower the incidence of diabetic foot. A new design method is proposed in this study for optimizing the stress distribution of the contact surfaces between the foot and the insole by applying functional gradient structural properties to the insole. Finite element analysis was employed for studying the contact mechanics, which laid the foundation for modulus readjustment during the optimization process. The moduli of the materials were correlated to the properties of the structural porous units. The customized insoles were manufactured using additive manufacturing technology and put into mechanical test. Results show that the designed insole helps in increasing the foot contact area by approximately 30% and reducing the peak contact pressure by 35%. Hence, the proposed method can be used to design customized insoles, particularly diabetic insoles, by offering better contact mechanics and good potential for reducing the severity of diabetic foot. The methodology is equally applicable to other designs involving optimization of material properties.


Assuntos
Pé Diabético , Desenho de Equipamento , Sapatos , Análise de Elementos Finitos , Humanos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...