Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36234167

RESUMO

In this study, the chemical structure of asphalt aging was analyzed and identified based on 1H-NMR quantitative technology and chemometrics analysis. The characteristic full component information of 30 samples before and after aging from 5 different oil sources was measured by 1H-NMR, and the results were converted into a data matrix. This study used PCA, HAC, OPLS-DA, and Fisher discriminant analysis to evaluate the change rules of the chemical composition of asphalt from different oil sources after aging. The results showed that the 1H-NMR spectra of 30 asphalt samples were very similar, and hydrogen could be divided into 4 categories according to the chemical shift: HA, Hα, Hß, and Hγ. The shapes of 1H-NMR of asphalt samples from different oil sources showed slight differences, while the shapes of the 1H-NMR spectra of asphalt samples with different aging degrees from the same oil source was basically the same. The results of PCA and HAC analysis showed that the samples of the same asphalt and asphalt with similar oil sources before and after aging were still in the same category, and the spatial distance was very close, while the spatial distance of asphalts from different oil sources was very different. The Fisher discriminant function established by PCA and HAC can be used to distinguish asphalt samples from different oil sources with an accuracy of up to 100%.

2.
ACS Appl Mater Interfaces ; 7(45): 25402-12, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26517280

RESUMO

Metal-organic frameworks (MOFs) with constricted pores can increase the adsorbate density of gas and facilitate effective CO2 separation from flue gas or natural gas due to their enhanced overlapping of potential fields of the pores. Herein, an MOF with constricted pores, which was formed by narrow channels and blocks of functional groups, was fabricated from the assembly of a methyl-functionalized ligand and Zn(II) centers (termed NPC-7-Zn). Structural analysis of the as-synthesized NPC-7-Zn reveals a series of zigzag pores with pore diameters of ∼0.7 nm, which could be favorable for CO2 traps. For reinforcing the framework stability, a solvothermal metal metathesis on the pristine MOF NPC-7-Zn was performed, and a new Cu(II) MOF (termed NPC-7-Cu) with an identical framework was produced. The influence of the reaction temperatures on the metal metathesis process was investigated. The results show that the constricted pores in NPC-7-Zn can induce kinetic issues that largely slow the metal metathesis process at room temperature. However, this kinetic issue can be solved by applying higher reaction temperatures. The modified MOF NPC-7-Cu exhibits significant improvements in framework stability and thus leads to a permanent porosity for this framework. The constricted pore structure enables enhanced potential fields for these pores, rendering this MOF with high adsorbate densities for CO2 and high adsorption selectivity for a CO2/N2 gas mixture. The adsorption kinetic studies reveal that CH4 has a faster diffusion rate constant than CO2, showing a surface diffusion controlled mechanism for CO2 and CH4 adsorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...