Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 44(3): 524-537, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36042292

RESUMO

Amyotrophic lateral sclerosis (ALS) is one of the most common fatal neurodegenerative diseases in adults. ALS pathogenesis is associated with toxic SOD1 aggregates generated by mutant SOD1. Since autophagy is responsible for the clearance of toxic protein aggregates including SOD1 aggregates, autophagy induction has been considered as a potential strategy for treating ALS. Autophagic signaling is initiated by unc-51 like autophagy activating kinase 1 (ULK1) complex. We previously identified that BL-918 as a specific ULK1 activator, which exerted cytoprotective effect against Parkinson's disease in vitro and in vivo. In this study we investigated whether BL-918 exerted a therapeutic effect against ALS, and characterized its pharmacokinetic profile in rats. In hSODG93A-NSC34 cells, treatment with BL-918 (5, 10 µM) dose-dependently induced ULK1-dependent autophagy, and eliminated toxic SOD1 aggregates. In SODG93A mice, administration of BL-918 (40, 80 mg/kg, b.i.d., i.g.) dose-dependently prolonged lifespan and improved the motor function, and enhanced the clearance of SOD1 aggregates in spinal cord and cerebral cortex through inducing autophagy. In the pharmacokinetic study conducted in rats, we found BL-918 and its 2 metabolites (M8 and M10) present in spinal cord and brain; after intragastric and intravenous administration, BL-918 reached the highest blood concentration compared to M8 and M10. Collectively, ULK1 activator BL-918 displays a therapeutic potential on ALS through inducing cytoprotective autophagy. This study provides a further clue for autophagic dysfunction in ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Ratos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo
2.
J Hematol Oncol ; 15(1): 14, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123522

RESUMO

Non-coding RNAs (ncRNAs) have been defined as a class of RNA molecules transcribed from the genome but not encoding proteins, such as microRNAs, long non-coding RNAs, Circular RNAs, and Piwi-interacting RNAs. Accumulating evidence has recently been revealing that ncRNAs become potential druggable targets for regulation of several small-molecule compounds, based on their complex spatial structures and biological functions in cancer therapy. Thus, in this review, we focus on summarizing some new emerging designing strategies, such as high-throughput screening approach, small-molecule microarray approach, structure-based designing approach, phenotypic screening approach, fragment-based designing approach, and pharmacological validation approach. Based on the above-mentioned approaches, a series of representative small-molecule compounds, including Bisphenol-A, Mitoxantrone and Enoxacin have been demonstrated to modulate or selectively target ncRNAs in different types of human cancers. Collectively, these inspiring findings would provide a clue on developing more novel avenues for pharmacological modulations of ncRNAs with small-molecule drugs for future cancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Neoplasias/tratamento farmacológico , RNA não Traduzido/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/química , Desenho de Fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/genética , Bibliotecas de Moléculas Pequenas/química
3.
J Med Chem ; 64(19): 14192-14216, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34605238

RESUMO

Sirtuin-3 (SIRT3) is an NAD+-dependent protein deacetylase localized primarily in the mitochondria with many links to different types of human cancers. Autophagy, which is a highly conserved lysosomal degradation process in eukaryotic cells, has been recently reported to be positively regulated by SIRT3 in cancer; therefore, activating SIRT3-modulated autophagy may be a promising strategy for drug discovery. In this study, we discovered a small-molecule activator of SIRT3 compound 33c (ADTL-SA1215) with specific SIRT3 deacetylase activity by structure-guided design and high-throughput screening. Subsequently, compound 33c inhibited the proliferation and migration of human breast carcinoma MDA-MB-231 cells by SIRT3-driven autophagy/mitophagy signaling pathways in vitro and in vivo. Collectively, these results demonstrate that pharmacological activation of SIRT3 is a potential therapeutic approach of triple negative breast cancer (TNBC). More importantly, compound 33c may be a first-in-class specific small-molecule activator of SIRT3 that would be utilized for future cancer drug development.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Desenho de Fármacos , Sirtuína 3/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
4.
Cell Prolif ; 54(12): e13135, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34632655

RESUMO

OBJECTIVES: Autophagy, a highly conserved lysosomal degradation process in eukaryotic cells, has been widely reported closely related to the progression of many types of human cancers, including LGG; however, the intricate relationship between autophagy and LGG remains to be clarified. MATERIALS AND METHODS: Multi-omics methods were used to integrate omics data to determine potential autophagy regulators in LGG. The expression of ZFP36L2 and RAB13 in SW1088 cells was experimentally manipulated using cDNAs and small interfering RNAs (siRNA). RT-qPCR detects RNAi gene knockout and cDNA overexpression efficiency. The expression levels of proteins in SW1088 cells were evaluated using Western blot analysis and immunofluorescence analysis. Homology modelling and molecular docking were used to identify compounds from Multi-Traditional Chinese Medicine (TCM) Databases. The apoptosis ratios were determined by flow cytometry analysis of Annexin-V/PI double staining. We detect the number of autophagosomes by GFP-MRFP-LC3 plasmid transfection to verify the process of autophagy flow. RESULTS: We integrated various omics data from LGG, including EXP, MET and CNA data, with the SNF method and the LASSO algorithm, and identified ZFP36L2 and RAB13 as positive regulators of autophagy, which are closely related to the core autophagy regulators. Both transcription level and protein expression level of the four autophagy regulators, including ULK1, FIP200, ATG16L1 and ATG2B, and LC3 puncta were increased by ZFP36L2 and RAB13 overexpression. In addition, RAB13 participates in autophagy through ATG2B, FIP200, ULK1, ATG16L1 and Beclin-1. Finally, we screened multi-TCM databases and identified gallic acid as a novel potential RAB13 inhibitor, which was confirmed to negatively regulate autophagy as well as to induce cell death in SW1088 cells. CONCLUSION: Our study identified the key autophagic regulators ZFP36L2 and Rab13 in LGG progression, and demonstrated that gallic acid is a small molecular inhibitor of RAB13, which negatively regulates autophagy and provides a possible small molecular medicine for the subsequent treatment of LGG.


Assuntos
Autofagia , Bases de Dados Factuais , Glioma , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Proteínas rab de Ligação ao GTP , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Glioma/tratamento farmacológico , Glioma/enzimologia , Humanos , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/metabolismo
5.
Eur J Med Chem ; 210: 113088, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316691

RESUMO

The family with sequence similarity 20, member C (Fam20C), a Golgi casein kinase, has been recently regarded as a potential therapeutic target for the treatment of triple negative breast cancer (TNBC). Lacking enzyme activity center has been becoming an obstacle to the development of small-molecule inhibitors of Fam20C. Herein, we combined in silico high-throughput screening with chemical synthesis methods to obtain a new small-molecule Fam20C inhibitor 3r, which exhibited desired anti-proliferative activities against MDA-MB-231 cells and also inhibited migration. Subsequently, the enzymatic assay, molecular docking, and molecular dynamics (MD) simulations were carried out for validating that 3r could bind to Fam20C. In addition, 3r was found to induce apoptosis via the mitochondrial pathway in MDA-MB-231 cells as well as to inhibit cell migration. Moreover, we demonstrated that 3r inhibited tumor growth in vivo and thereby having a good therapeutic potential on TNBC. Taken together, these results suggest that 3r may be a novel Fam20C inhibitor with anti-proliferative and apoptosis-inducing activities, which would shed light on discovering more small-molecule drugs for the future TNBC therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caseína Quinase I/antagonistas & inibidores , Descoberta de Drogas , Proteínas da Matriz Extracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Caseína Quinase I/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas da Matriz Extracelular/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
6.
Theranostics ; 10(18): 8080-8097, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32724459

RESUMO

Background: Triple-negative breast cancer (TNBC) is one of the most prevalent neoplastic diseases worldwide, but efficacious treatments for this pathological condition are still challenging. The lack of an effective targeted therapy also leads to a poor prognosis for patients affected by TNBC. In the present study, we repurposed the distinctive inhibitory effects of flubendazole, a traditional anthelmintic drug, towards the putative modulation of proliferation and migration of TNBC in vitro and in vivo. Methods: According to a series of experimental approaches, including immunofluorescence (IF), immunoblotting (IB), siRNA and GFP-mRFP-LC3 plasmid transfection, respectively, we have found that flubendazole is capable of inducing autophagic cell death and apoptosis, thus exerting some anti-proliferative and anti-migration activity in TNBC cells. The therapeutic effects of flubendazole were evaluated by xenograft mouse models, followed by immunohistochemistry (IHC), IF and IB. Changes in the gene expression profiles of flubendazole-treated TNBC cells were analyzed by RNA sequencing (RNA-seq) and validated by IB. The potential binding mode of flubendazole and EVA1A was predicted by molecular docking and demonstrated by site-directed mutagenesis. Results: We have presently found that flubendazole exhibits a considerable anti-proliferative activity in vitro and in vivo. Mechanistically, the induction of autophagic cell death appears to be pivotal for flubendazole-mediated growth inhibition of TNBC cells, whereas blocking autophagy was able to improve the survival rate and migration ability of flubendazole-treated TNBC cells. Specifically, RNA-seq analysis showed that flubendazole treatment could promote the up-regulation of EVA1A. Flubendazole may regulate autophagy and apoptosis by targeting EVA1A, thus affecting the mechanisms of TNBC proliferation and migration. Furthermore, Thr113 may be the key amino acid residues for the binding of flubendazole to EVA1A. Conclusion: Our results provide novel insights towards the putative anti-cancer efficacy of flubendazole. Furthermore, here we show that flubendazole could serve as a potential therapeutic drug in TNBC. Altogether, this study highlights the possibility of this repurposed autophagic inducer for future cancer treatments.


Assuntos
Autofagia/efeitos dos fármacos , Mebendazol/análogos & derivados , Proteínas de Membrana/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Reposicionamento de Medicamentos , Feminino , Humanos , Mebendazol/farmacologia , Mebendazol/uso terapêutico , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , RNA-Seq , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Nurs Educ ; 58(12): 681-689, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794034

RESUMO

BACKGROUND: Newly graduated nurses' communication ability often does not satisfy the needs of clinical sites. New training pedagogies are needed to help nursing students improve communication skills. This study aimed to evaluate the effects of simulation-based deliberate practice on cultivating nursing students' communication, empathy, and self-efficacy. METHOD: The study was a randomized controlled trial. A total of 132 first-year nursing students participated in the study at a nursing school in China. The intervention was guided by simulation-based education and deliberate practice. The Clinical Communication Ability Scale, Jefferson Scale of Empathy-Health Professionals, and General Self-Efficacy Scale were used to measure the students' outcomes. RESULTS: After the intervention, students' scores of clinical communication ability, empathy, and self-efficacy in the experimental group all increased significantly, compared with those of the control group. CONCLUSION: The simulation-based deliberate practice program is a feasible teaching method targeting improvement in nursing students' communication, empathy, and self-efficacy. [J Nurs Educ. 2019;58(12):681-689.].


Assuntos
Comunicação , Empatia , Autoeficácia , Treinamento por Simulação , Estudantes de Enfermagem , China , Competência Clínica , Feminino , Humanos , Masculino , Resolução de Problemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA