Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(9): 5092-5101, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699827

RESUMO

The combined pollution of antibiotics adsorption by microplastics has become inevitable in soil ecosystems; moreover, the plant biological effects under combined stress remain unclear. This study used soybean variety Jindou 21 as the material and conducted seed germination test and soil-potted seedling experiment to study the effects of different single and combined treatments of polyethylene (PE) and sulfamethazine (SMZ) on seed germination, seedling growth, photosynthetic parameters, chlorophyll fluorescence parameters, and nitrogen metabolism. The results showed that single PE treatment at low levels promoted soybean seed germination and seedling growth physiology; however, inhibited them at a high level. A lower-level PE treatment[10 mg·L-1 (or mg·kg-1)] could promote soybean seed germination, seedling growth, photosynthesis, and nitrogen metabolism, whereas a higher level PE treatment[100 mg·L-1 and 200 mg·L-1 (or mg·kg-1)] had significant inhibition. The single SMZ treatment had different degrees of inhibition on soybean seed germination and seedling growth physiology, and the inhibition degree increased with the increase in SMZ treatment level. Under the different levels of combined treatments of PE and SMZ, adding the lower level PE treatment could alleviate the inhibition of the single SMZ treatment on soybean, with 10 mg·L-1(or mg·kg-1) PE+1 mg·L-1(or mg·kg-1) SMZ treatment having the best comprehensive mitigation effect, which could increase soybean seed germination potential, germination rate, germination index, vigor index, plant height, root length, shoot and root fresh weight, Pn, Gs, Tr, chlorophyll contents, Fv/Fm, ΦPSⅡ, ETR, qP, and key enzyme activities for nitrogen metabolism such as NR and decrease the average germination time, Ci, NPQ, and NO3--N and NH4+-N contents compared with those in the single SMZ treatment. Adding the higher level PE treatment enhanced the inhibition of SMZ on soybean, and the inhibition degree increased with the increase in SMZ treatment level, in which 200 mg·L-1(or mg·kg-1) PE+50 mg·L-1(or mg·kg-1) SMZ treatment yielded the greatest inhibition. In summary, the lower level PE treatment could alleviate the inhibition of SMZ on soybean seeds and seedlings to a certain extent; however, the higher level PE treatment could produce a synergistic effect with SMZ, thus aggravating the toxic effect of the single stress treatment.


Assuntos
Polietileno , Plântula , Sulfametazina/toxicidade , Germinação , Glycine max , Ecossistema , Plásticos , Sementes , Clorofila , Nitrogênio
2.
Hypertens Res ; 45(11): 1743-1753, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35999282

RESUMO

Previous studies have shown that female offspring are resistant to fetal high-fat diet (HFD)-induced programming of heightened vascular contraction; however, the underlying mechanisms remain unclear. The present study tested the hypothesis that estrogen plays a key role in protecting females from fetal programming of increased vascular contraction induced by maternal HFD exposure. Pregnant rats were fed a normal diet (ND) or HFD (60% kcal from fat). Ovariectomy (OVX) and 17ß-estradiol (E2) replacement were performed on 8-week-old female offspring. Aortas were isolated from adult female offspring. Maternal HFD exposure increased angiotensin II (Ang II)-induced contractions of the aorta in adult OVX offspring, which was abrogated by E2 replacement. The AT1 receptor (AT1R) antagonist losartan (10 µM), but not the AT2 receptor (AT2R) antagonist PD123319 (10 µM), completely blocked Ang II-induced contractions in both ND and HFD offspring. In addition, HFD exposure caused a decrease in endothelium-dependent relaxations induced by acetylcholine (ACh) in adult OVX but not OVX-E2 offspring. However, it had no effect on sodium nitroprusside (SNP)-induced endothelium-independent aorta relaxation in any of the six groups. Maternal HFD feeding increased AT1R, but not AT2R, leading to an increased AT1R/AT2R ratio in HFD-exposed OVX offspring, associated with selective decreases in DNA methylation at the AT1aR promoter, which was ameliorated by E2 replacement. Our results indicated that estrogen play a key role in sex differences of maternal HFD-induced vascular dysfunction and development of hypertensive phenotype in adulthood by differently regulating vascular AT1R and AT2R gene expression through a DNA methylation mechanism.


Assuntos
Dieta Hiperlipídica , Estrogênios , Hipertensão , Animais , Feminino , Gravidez , Ratos , Angiotensina II/farmacologia , Dieta Hiperlipídica/efeitos adversos , Estrogênios/fisiologia , Losartan , Fenômenos Fisiológicos da Nutrição Materna
3.
J Endocrinol ; 250(1): 1-12, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33970125

RESUMO

Our previous study has demonstrated maternal high-fat diet (HFD) caused sex-dependent cardiac hypertrophy in adult male, but not female offspring. The present study tested the hypothesis that estrogen normalizes maternal HFD-induced cardiac hypertrophy by regulating angiotensin II receptor (ATR) expression in adult female offspring. Pregnant rats were divided into the normal diet (ND) and HFD (60% kcal fat) groups. Ovariectomy (OVX) and 17ß-estradiol (E2) replacement were performed on 8-week-old female offspring. Maternal HFD had no effect on left ventricular (LV) wall thickness, cardiac function and molecular markers of cardiac hypertrophy function in sham groups. However, maternal HFD caused cardiac hypertrophy of offspring in OVX groups, which was abrogated by E2 replacement. In addition, maternal HFD had no effect on ERα and ERß in sham groups. In contrast, HFD significantly decreased ERα, but not ERß in OVX groups. In sham groups, there was no difference in the cardiac ATR type 1 (AT1R) and ATR type 2 (AT2R) between ND and HFD offspring. HFD significantly increased AT2R, but not AT1R in OVX groups. Furthermore, maternal HFD resulted in decreased glucocorticoid receptors (GRs) binding to the glucocorticoid response elements at the AT2R promoter, which was due to decreased GRs in hearts from OVX offspring. These HFD-induced changes in OVX groups were abrogated by E2 replacement. These results support a key role of estrogen in the sex difference of maternal HFD-induced cardiac hypertrophy in offspring, and suggest that estrogen protects female offspring from cardiac hypertrophy in adulthood by regulating AT2R.


Assuntos
Cardiomegalia/etiologia , Dieta Hiperlipídica/efeitos adversos , Estrogênios/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Receptor Tipo 2 de Angiotensina/metabolismo , Animais , Estradiol , Receptor alfa de Estrogênio/metabolismo , Feminino , Masculino , Miocárdio/metabolismo , Gravidez , Distribuição Aleatória , Ratos Sprague-Dawley , Fatores Sexuais
4.
Molecules ; 27(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011345

RESUMO

In the present work, the extraction process of total flavonoids (TFs) from X. sorbifolia flowers by ultrasound-assisted extraction was optimized under the response surface methodology (RSM) on the basis of single-factor experiments. The optimal extraction conditions were as follows: ethanol concentration of 80%, solid-liquid ratio of 1:37 (g/mL), temperature of 84 °C, and extraction time of 1 h. Under the optimized conditions, the extraction yield of the TFs was 3.956 ± 0.04%. The radical scavenging capacities of TFs against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) were much greater than that of rutin. The results of antibacterial experiments indicated that the TFs displayed strong inhibitory activities on E. coli, S. aureus and Bacillus subtilis. Therefore, X. sorbifolia flowers can be used as a novel source of natural flavonoids, and the TFs have potential applications as natural antioxidants or antibacterial agents in the food and pharmaceutical industries.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Flavonoides/farmacologia , Flores/química , Extratos Vegetais/farmacologia , Sapindaceae/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Fracionamento Químico/métodos , Relação Dose-Resposta a Droga , Flavonoides/química , Flavonoides/isolamento & purificação , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...