Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathol Res Pract ; 234: 153895, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35462225

RESUMO

SPOCK1 is an extracellular proteoglycan and involved in tumor growth and metastasis in various cancers. 5-fluorouracil (5-FU) is commonly used for the treatment of colorectal cancer (CRC) in patients who receive concurrent chemoradiotherapy. However, the relationship between development of resistance to 5-FU and SPOCK1 remain unclear. In this study, we established two 5-fluorouracil (5-FU)-resistant CRC cell lines, HCT116/FU and LOVO/FU, and found that SPOCK1 is upregulated in 5-FU-resistance CRC cells compared with its parental cell line. knockdown of SPOCK1 in 5-FU-resistant CRC cells increases their sensitivity to 5-FU. In contrast, transient transfection of SPOCK1 enhanced HCT116 and LOVO cell resistance to 5-FU and reduced cell apoptosis. Mechanistically, SPOCK1 promoted 5-FU resistance by regulating PRRX1 expression and the downstream apoptosis signaling pathway. Taken together, our results revealed for the first time that SPOCK1 plays a crucial role in the resistance of CRC cells to 5-FU and indicated that targeting SPOCK1 may be a promising therapeutic strategy to overcome 5-FU resistance in CRC.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Proteínas de Homeodomínio/metabolismo , Humanos , Proteoglicanas/metabolismo , Proteoglicanas/uso terapêutico
2.
Nanomicro Lett ; 14(1): 59, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35138506

RESUMO

Lightweight, ultra-flexible, and robust crosslinked transition metal carbide (Ti3C2 MXene) coated polyimide (PI) (C-MXene@PI) porous composites are manufactured via a scalable dip-coating followed by chemical crosslinking approach. In addition to the hydrophobicity, anti-oxidation and extreme-temperature stability, efficient utilization of the intrinsic conductivity of MXene, the interfacial polarization between MXene and PI, and the micrometer-sized pores of the composite foams are achieved. Consequently, the composites show a satisfactory X-band electromagnetic interference (EMI) shielding effectiveness of 22.5 to 62.5 dB at a density of 28.7 to 48.7 mg cm-3, leading to an excellent surface-specific SE of 21,317 dB cm2 g-1. Moreover, the composite foams exhibit excellent electrothermal performance as flexible heaters in terms of a prominent, rapid reproducible, and stable electrothermal effect at low voltages and superior heat performance and more uniform heat distribution compared with the commercial heaters composed of alloy plates. Furthermore, the composite foams are well attached on a human body to check their electromechanical sensing performance, demonstrating the sensitive and reliable detection of human motions as wearable sensors. The excellent EMI shielding performance and multifunctionalities, along with the facile and easy-to-scalable manufacturing techniques, imply promising perspectives of the porous C-MXene@PI composites in next-generation flexible electronics, aerospace, and smart devices.

3.
Sci Rep ; 7(1): 7415, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28785081

RESUMO

This study aimed to determine how specific leaf area (SLA) and leaf dry matter content (LDMC) respond to N addition and understory vegetation removal in a 13-year-old Mongolian pine (Pinus sylvestris var. mongolica) plantation. Traits (SLA, LDMC, individual needle dry weight, N and P concentrations) of different-aged needles and their crown-average values were measured, and their relationships with soil N and P availability were examined. N addition and understory removal reduced soil Olsen-P by 15-91%. At the crown level, N addition significantly reduced foliar P concentration (by 19%) and SLA (by 8%), and elevated N concentration (by 31%), LDMC (by 10%) and individual leaf dry weight (by 14%); understory removal did not have a significant effect on all leaf traits. At the needle age level, traits of the previous year's needles responded more strongly to N addition and understory removal than the traits of current-year needles, particularly SLA and N concentration. SLA and LDMC correlated more closely with soil Olsen-P than with soil inorganic N, and LDMC correlated more closely with soil Olsen-P than SLA did. These results indicate that aggravated P limitation resulting from N addition and understory removal could constrain Mongolian pine growth through their effects on the leaf traits.


Assuntos
Nitrogênio/metabolismo , Fósforo/metabolismo , Pinus/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Biometria , Fenótipo , Pinus/anatomia & histologia , Pinus/química , Pinus/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Solo/química
4.
Ying Yong Sheng Tai Xue Bao ; 28(6): 1743-1752, 2017 Jun 18.
Artigo em Chinês | MEDLINE | ID: mdl-29745134

RESUMO

Soil drying-rewetting is a common phenomenon in arid and semi-arid regions. Under the background of global climate change, it is predicted that the intensity of soil drying-rewetting cycle in Horqin Sandy Land will be further strengthened in the future. In this study, we conducted an in-situ soil column incubation experiment for 180 days to investigate the effects of soil drying-rewetting on leaf litter decomposition and nutrient releases of Populus simonii and Pinus sylvestris var. mongo-lica in Horqin Sandy Land. There were three treatments: Constantly moist treatment (CM, 60% water holding capacity during whole incubation period), mild drying-rewetting treatment (DW1, gra-dual drought for 10 days plus 60% WHC for 20 days) and heavy drying-rewetting treatment (DW2, gradual drought for 20 days plus 60% WHC for 10 days). To evaluate their delayed effects, leaf litter in all three treatments were incubated for 60 days under same and constant humid condition (60% WHC) after four cycles of soil drying-rewetting. The responses of litter decomposition to soil drying-rewetting cycles and nutrient releases of P. simonii and P. sylvestris var. mongolica were similar during the drying and rewetting period. Litter mass loss and the release of C, lignin and total phenol were decreased by 17.4%, 23.8%, 35.2% and 32.7% in DW2 treatment compared with CM treatment. There was no significant difference in release of leaf litter N or P among the drying-rewetting treatments. There were consistent changes of litter mass loss and nutrient releases among the treatments at the end of drying-rewetting and delayed incubation period. However, litter decomposition rate and litter C and lignin release rates were increased in DW2 treatment compared with CM treatment during the delayed incubation period, indicating a short-term delayed effect.


Assuntos
Florestas , Folhas de Planta , China , Clima Desértico , Ecossistema , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...