Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(45): eadi6086, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939180

RESUMO

Physical aging is a long-lasting research hot spot in the glass community, yet its long-term effects remain unclear because of the limited experimental time. In this study, we discover the extraordinary aging effects in five typical lunar glassy particles with diameters ranging from about 20 to 53 micrometers selected from Chang'e-5 lunar regolith. It is found that geological time scales' aging can lead to unusually huge modulus enhancements larger than 73.5% while much weaker effects on hardness (i.e., varies decoupling evolutions of Young's modulus and hardness during aging) in these lunar glassy samples. Such extraordinary aging effects are primarily attributed to the natural selected complex glassy compositions and structures, consistent with high entropy and minor element doping criteria, prevailing under the special lunar conditions and the extensive aging time for the lunar glasses. This study offers valuable insights for developing high-performance and stable glassy materials for radiation protection and advanced space explorations.

2.
Natl Sci Rev ; 10(12): nwad079, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37954203

RESUMO

Lunar glasses with different origins act as snapshots of their formation processes, providing a rich archive of the Moon's formation and evolution. Here, we reveal diverse glasses from Chang'E-5 (CE-5) lunar regolith, and clarify their physical origins of liquid quenching, vapor deposition and irradiation damage respectively. The series of quenched glasses, including rotation-featured particles, vesicular agglutinates and adhered melts, record multiple-scale impact events. Abundant micro-impact products, like micron- to nano-scale glass droplets or craters, highlight that the regolith is heavily reworked by frequent micrometeorite bombardment. Distinct from Apollo samples, the indigenous ultra-elongated glass fibers drawn from viscous melts and the widespread ultra-thin deposited amorphous rims without nanophase iron particles both indicate a relatively gentle impact environment at the CE-5 landing site. The clarification of multitype CE-5 glasses also provides a catalogue of diverse lunar glasses, meaning that more of the Moon's mysteries, recorded in glasses, could be deciphered in future.

3.
Sci Rep ; 11(1): 3903, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594154

RESUMO

Direct measurement of critical cooling rates has been challenging and only determined for a minute fraction of the reported metallic glass forming alloys. Here, we report a method that directly measures critical cooling rate of thin film metallic glass forming alloys in a combinatorial fashion. Based on a universal heating architecture using indirect laser heating and a microstructure analysis this method offers itself as a rapid screening technique to quantify glass forming ability. We use this method to identify glass forming alloys and study the composition effect on the critical cooling rate in the Al-Ni-Ge system where we identified Al51Ge35Ni14 as the best glass forming composition with a critical cooling rate of 104 K/s.

4.
J Phys Condens Matter ; 31(45): 455401, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31342932

RESUMO

Deformation of metallic glasses is closely related to their microstructures which depend on the composition, processing method, and the size of the materials. This subtle structure-property relation is fairly complex and remains to be explored. Here, we scrutinize the microstructural evolution in relation to the mechanical properties in metallic glass nanowires with the same composition and size but subtle microstructural differences by controlling the preparing process using molecular dynamics simulations. The results suggest that a structural threshold exists for the transformation of deformation mechanisms in metallic glasses: when the structural feature exceeds the threshold, the deformation changes from homogeneous flow to shear localized deformation.

5.
Nature ; 569(7754): 99-103, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043727

RESUMO

Since their discovery in 19601, metallic glasses based on a wide range of elements have been developed2. However, the theoretical prediction of glass-forming compositions is challenging and the discovery of alloys with specific properties has so far largely been the result of trial and error3-8. Bulk metallic glasses can exhibit strength and elasticity surpassing those of conventional structural alloys9-11, but the mechanical properties of these glasses are critically dependent on the glass transition temperature. At temperatures approaching the glass transition, bulk metallic glasses undergo plastic flow, resulting in a substantial decrease in quasi-static strength. Bulk metallic glasses with glass transition temperatures greater than 1,000 kelvin have been developed, but the supercooled liquid region (between the glass transition and the crystallization temperature) is narrow, resulting in very little thermoplastic formability, which limits their practical applicability. Here we report the design of iridium/nickel/tantalum metallic glasses (and others also containing boron) with a glass transition temperature of up to 1,162 kelvin and a supercooled liquid region of 136 kelvin that is wider than that of most existing metallic glasses12. Our Ir-Ni-Ta-(B) glasses exhibit high strength at high temperatures compared to existing alloys: 3.7 gigapascals at 1,000 kelvin9,13. Their glass-forming ability is characterized by a critical casting thickness of three millimetres, suggesting that small-scale components for applications at high temperatures or in harsh environments can readily be obtained by thermoplastic forming14. To identify alloys of interest, we used a simplified combinatorial approach6-8 harnessing a previously reported correlation between glass-forming ability and electrical resistivity15-17. This method is non-destructive, allowing subsequent testing of a range of physical properties on the same library of samples. The practicality of our design and discovery approach, exemplified by the identification of high-strength, high-temperature bulk metallic glasses, bodes well for enabling the discovery of other glassy alloys with exciting properties.

6.
ACS Appl Mater Interfaces ; 9(39): 34489-34496, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28895396

RESUMO

Photodetectors based on low-dimensional materials have attracted tremendous attention because of their high sensitivity and compatibility with conventional semiconductor technology. However, up until now, developing low-dimensional phototransistors with high responsivity and low dark currents over broad-band spectra still remains a great challenge because of the trade-offs in the potential architectures. In this work, we report a hybrid phototransistor consisting of a single In2O3 nanowire as the channel material and a multilayer WSe2 nanosheet as the decorating sensitizer for photodetection. Our devices show high responsivities of 7.5 × 105 and 3.5 × 104 A W-1 and ultrahigh detectivities of 4.17 × 1017 and 1.95 × 1016 jones at the wavelengths of 637 and 940 nm, respectively. The superior detectivity of the hybrid architecture arises from the extremely low dark currents and the enhanced photogating effect in the depletion regime by the unique design of energy band alignment of the channel and sensitizer materials. Moreover, the visible to near-infrared absorption properties of the multilayer WSe2 nanosheet favor a broad-band spectral response for the devices. Our results pave the way for developing ultrahigh-sensitivity photodetectors based on low-dimensional hybrid architectures.

7.
ACS Comb Sci ; 19(11): 687-693, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28902986

RESUMO

Quantitative prediction of glass forming ability using a priori known parameters is highly desired in metallic glass development; however proven to be challenging because of the complexity of glass formation. Here, we estimate the number of potential metallic glasses (MGs) and bulk metallic glasses (BMGs) forming systems and alloys, from empirically determined alloy design rules based on a priori known parameters. Specifically, we take into account atomic size ratio, heat of mixing, and liquidus temperature, which we quantify on binary glasses and centimeter-sized BMGs. When expanding into higher order systems that can be formed among 32 practical elements, we reduce the composition space for BMG formation using developed criteria by 106 times and estimate ∼3 million binary, ternary, quaternary, and quinary BMGs alloys.


Assuntos
Ligas/química , Bases de Dados de Compostos Químicos , Teste de Materiais , Fenômenos Físicos , Propriedades de Superfície
8.
Sci Rep ; 7(1): 10249, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860477

RESUMO

Metallic core-shell nanostructures have inspired prominent research interests due to their better performances in catalytic, optical, electric, and magnetic applications as well as the less cost of noble metal than monometallic nanostructures, but limited by the complicated and expensive synthesis approaches. Development of one-pot and inexpensive method for metallic core-shell nanostructures' synthesis is therefore of great significance. A novel Cu network supported nanoporous Ag-Cu alloy with an Ag shell and an Ag-Cu core was successfully synthesized by one-pot chemical dealloying of Zr-Cu-Ag-Al-O amorphous/crystalline composite, which provides a new way to prepare metallic core-shell nanostructures by a simple method. The prepared nanoporous Ag-Cu@Ag core-shell alloy demonstrates excellent air-stability at room temperature and enhanced oxidative stability even compared with other reported Cu@Ag core-shell micro-particles. In addition, the nanoporous Ag-Cu@Ag core-shell alloy also possesses robust antibacterial activity against E. Coli DH5α. The simple and low-cost synthesis method as well as the excellent oxidative stability promises the nanoporous Ag-Cu@Ag core-shell alloy potentially wide applications.


Assuntos
Ligas , Antibacterianos/química , Antibacterianos/farmacologia , Cobre , Nanotecnologia , Prata , Ligas/química , Cobre/química , Testes de Sensibilidade Microbiana , Nanoporos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Prata/química , Análise Espectral
9.
Sci Rep ; 7(1): 7989, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801665

RESUMO

We used pulsed laser beam welding method to join Pd43Cu27Ni10P20 (at.%) bulk metallic glass and characterized the properties of the joint. Fusion zone and heat-affected zone in the weld joint can be maintained completely amorphous as confirmed by X-ray diffraction and differential scanning calorimetry. No visible defects were observed in the weld joint. Nanoindentation and bend tests were carried out to determine the mechanical properties of the weld joint. Fusion zone and heat-affected zone exhibit very similar elastic moduli and hardness when compared to the base material, and the weld joint shows high ductility in bending which is accomplished through the operation of multiple shear bands. Our results reveal that pulsed laser beam welding under appropriate processing parameters provides a practical viable method to join bulk metallic glasses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...