Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 56(1): 113-116, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31793572

RESUMO

We report on the basis of DFT computations a plausible and detailed reaction mechanism for the first Pd-catalyzed decarbonylative phosphorylation of amides forming C-P bonds, which reveals, among other things, crucial events in the second coordination sphere, including ion pair and hydrogen bonding interactions as well as proton transfer.

2.
Dalton Trans ; 48(42): 15802-15809, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31560356

RESUMO

Ultrashort metal-metal distances (USMMDs, dM-M < 1.900 Å) have been realized computationally between the main group metal beryllium. However, due to their ionic charge state and the insufficient stability of their electronic structures and/or thermodynamic stabilities, the known species with ultrashort Be-Be distances are unsuitable for synthesis in the condensed phase, which deters the applications of these interesting structures from being explored. In the present study, using our previously reported global minima species [XH3-Be2H3-XH3]+ (X = N and P) with ultrashort Be-Be distances and well-defined electronic structures as their parent molecules, we designed a series of neutral polygons retaining ultrashort Be-Be distances. These polygons also possess well-defined electronic structures and good thermodynamic stabilities, which are demonstrated by their large HOMO-LUMO gaps of 6.20-7.68 eV, very high vertical detachment energies (VDEs) of 8.96-11.29 eV, rather low vertical electron affinities (VEAs) of -1.21 to +1.78 eV, and unexpectedly high formation energies relative to the building blocks of E- and Be2H3+ (-105.2 to -153.2 kcal mol-1 for the formation of an E-Be bond). The good stability with regard to their electronic structures and thermochemistry reveal their high feasibility to be synthesized in the condensed phase. Thus, we anticipate experimental studies on these interesting nano-polygons to realize structures with USMMDs between main group metals and explore their possible application.

3.
Dalton Trans ; 48(19): 6581-6587, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31016316

RESUMO

A current project in metal-metal bonding chemistry is to achieve ultrashort metal-metal distances (USMMDs, denoted by dM-M < 1.900 Å) between main group metal beryllium atoms. A valid way for achieving such USMMDs is the substitution of a carbon atom in a planar pentacoordinate environment with the isoelectronic Be2 moiety. In the present work, we report our recent findings that a similar substitution can be applied to the carbon atom in a planar hexacoordinate environment. Using species CN3Be3+ and CO3Li3+ and related analogues as the templates, the Be2N3M3+ (M = Be, Mg, Ca) and Be2O3M3+ (M = Li, Na, K) species with axial ultrashort Be-Be distances of 1.627-1.870 Å were designed computationally. The ultrashort Be-Be distances in these species represent a balance between the lengthening effect of axial Be-Be electrostatic interactions and the shortening effects of the strong X-Be bonding and repulsive X-X-X electrostatic interactions. In addition, the shorter axial Be-Be distances were determined firstly by the smaller size of the bridging electronegative X atoms and secondly by the lower electronegativity of the peripheral M atoms, while the stabilities of the newly designed species were closely related to the types of valence electron pairs, whereby the localized two-center two-electron bonds were better for stabilization than the non-bonding valence lone pairs. Among the newly designed species, Be2N3Be3+ and Be2N3Mg3+ were characterized to be the kinetically stable global minima, thereby providing promising targets for the experimental realization of species with USMMDs between main group metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...