Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Healthc Eng ; 2020: 8817422, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133473

RESUMO

Bone drilling is known as one of the most sensitive milling processes in biomedical engineering field. Fracture behavior of this cortical bone during drilling has attracted the attention of many researchers; however, there are still impending concerns such as necrosis, tool breakage, and microcracks due to high cutting forces, torques, and high vibration while drilling. This paper presents a comparative analysis of the cutting forces, torques, and vibration resulted on different bone samples (bovine, porcine, and artificial femur) using a 6dof Robot arm effector with considerations of its stiffness effects. Experiments were conducted on two spindle speeds of 1000 and 1500 rpm with a drill bit diameter of 2.5 mm and 6 mm depth of cut. The results obtained from the specimens were processed and analyzed using MATLAB R2015b and Visio 2000 software; these results were then compared with a prior test using manual and conventional drilling methods. The results obtained show that there is a significant drop in the average values of maximum drilling force for all the bone specimens when the spindle speed changes from 1000 rev/min to 1500 rev/min, with a drop from (20.07 to 12.34 N), approximately 23.85% for bovine, (11.25 to 8.14 N) with 16.03% for porcine, and (5.62 to 3.86 N) with 33.99% for artificial femur. The maximum average values of torque also decrease from 41.2 to 24.2 N·mm (bovine), 37.0 to 21.6 N·mm (porcine), and 13.6 to 6.7 N·mm (artificial femur), respectively. At an increase in the spindle speed, the vibration amplitude on all the bone samples also increases considerably. The variation in drilling force, torque, and vibration in our result also confirm that the stiffness of the robot effector joint has negative effect on the bone precision during drilling process.


Assuntos
Robótica , Vibração , Animais , Osso e Ossos , Bovinos , Fêmur/cirurgia , Suínos , Torque
2.
J Adv Res ; 23: 123-132, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32099674

RESUMO

The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to report robotic-assisted in situ 3D bio-printing technology for cartilage regeneration, and explore its potential in clinical application. A six-degree-of-freedom (6-DOF) robot was introduced in this study, and a fast tool center point (TCP) calibration method was developed to improve printing accuracy. The bio-ink consisted of hyaluronic acid methacrylate and acrylate-terminated 4-armed polyethylene glycol was employed as well. The in vitro experiment was performed on a resin model to verify the printing accuracy. The in vivo experiment was conducted on rabbits to evaluate the cartilage treatment capability. According to our results, the accuracy of the robot could be notably improved, and the error of printed surface was less than 30 µm. The osteochondral defect could be repaired during about 60 s, and the regenerated cartilage in hydrogel implantation and in situ 3D bio-printing groups demonstrated the same biomechanical and biochemical performance. We found that the cartilage injury could be treated by using this method. The robotic-assisted in situ 3D bio-printing is highly appropriate for improving surgical procedure, as well as promoting cartilage regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...