Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107388, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763333

RESUMO

As part of the classical renin-angiotensin system, the peptidase angiotensin-converting enzyme (ACE) makes angiotensin II which has myriad effects on systemic cardiovascular function, inflammation, and cellular proliferation. Less well known is that macrophages and neutrophils make ACE in response to immune activation which has marked effects on myeloid cell function independent of angiotensin II. Here, we discuss both classical (angiotensin) and nonclassical functions of ACE and highlight mice called ACE 10/10 in which genetic manipulation increases ACE expression by macrophages and makes these mice much more resistant to models of tumors, infection, atherosclerosis, and Alzheimer's disease. In another model called NeuACE mice, neutrophils make increased ACE and these mice are much more resistant to infection. In contrast, ACE inhibitors reduce neutrophil killing of bacteria in mice and humans. Increased expression of ACE induces a marked increase in macrophage oxidative metabolism, particularly mitochondrial oxidation of lipids, secondary to increased peroxisome proliferator-activated receptor α expression, and results in increased myeloid cell ATP. ACE present in sperm has a similar metabolic effect, and the lack of ACE activity in these cells reduces both sperm motility and fertilization capacity. These nonclassical effects of ACE are not due to the actions of angiotensin II but to an unknown molecule, probably a peptide, that triggers a profound change in myeloid cell metabolism and function. Purifying and characterizing this peptide could offer a new treatment for several diseases and prove potentially lucrative.


Assuntos
Células Mieloides , Peptidil Dipeptidase A , Animais , Humanos , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/genética , Células Mieloides/metabolismo , Células Mieloides/imunologia , Células Mieloides/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Angiotensina II/farmacologia
2.
Nat Immunol ; 24(1): 96-109, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36510022

RESUMO

Immune aging combines cellular defects in adaptive immunity with the activation of pathways causing a low-inflammatory state. Here we examined the influence of age on the kinetic changes in the epigenomic and transcriptional landscape induced by T cell receptor (TCR) stimulation in naive CD4+ T cells. Despite attenuated TCR signaling in older adults, TCR activation accelerated remodeling of the epigenome and induced transcription factor networks favoring effector cell differentiation. We identified increased phosphorylation of STAT5, at least in part due to aberrant IL-2 receptor and lower HELIOS expression, as upstream regulators. Human HELIOS-deficient, naive CD4+ T cells, when transferred into human-synovium-mouse chimeras, infiltrated tissues more efficiently. Inhibition of IL-2 or STAT5 activity in T cell responses of older adults restored the epigenetic response pattern to the one seen in young adults. In summary, reduced HELIOS expression in non-regulatory naive CD4+ T cells in older adults directs T cell fate decisions toward inflammatory effector cells that infiltrate tissue.


Assuntos
Envelhecimento , Linfócitos T CD4-Positivos , Fator de Transcrição Ikaros , Idoso , Animais , Humanos , Camundongos , Adulto Jovem , Envelhecimento/imunologia , Envelhecimento/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Montagem e Desmontagem da Cromatina , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T , Fator de Transcrição STAT5 , Fator de Transcrição Ikaros/metabolismo
3.
Front Aging ; 3: 867950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821833

RESUMO

The aging process causes profound restructuring of the host immune system, typically associated with declining host protection against cancer and infection. In the case of T cells, aging leads to the accumulation of a diverse set of T-cell aging-associated phenotypes (TASP), some of which have been implicated in driving tissue inflammation in autoimmune diseases. T cell aging as a risk determinant for autoimmunity is exemplified in two classical autoimmune conditions: rheumatoid arthritis (RA), a disease predominantly affecting postmenopausal women, and giant cell arteritis (GCA), an inflammatory vasculopathy exclusively occurring during the 6th-9th decade of life. Pathogenic T cells in RA emerge as a consequence of premature immune aging. They have shortening and fragility of telomeric DNA ends and instability of mitochondrial DNA. As a result, they produce a distinct profile of metabolites, disproportionally expand their endoplasmic reticulum (ER) membranes and release excess amounts of pro-inflammatory effector cytokines. Characteristically, they are tissue invasive, activate the inflammasome and die a pyroptotic death. Patients with GCA expand pathogenic CD4+ T cells due to aberrant expression of the co-stimulatory receptor NOTCH1 and the failure of the PD-1/PD-L1 immune checkpoint. In addition, GCA patients lose anti-inflammatory Treg cells, promoting tissue-destructive granulomatous vasculitis. In summary, emerging data identify T cell aging as a risk factor for autoimmune disease and directly link TASPs to the breakdown of T cell tolerance and T-cell-induced tissue inflammation.

4.
Nat Metab ; 4(6): 759-774, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35739396

RESUMO

Tissue macrophages (Mϕ) are essential effector cells in rheumatoid arthritis (RA), contributing to autoimmune tissue inflammation through diverse effector functions. Their arthritogenic potential depends on their proficiency to survive in the glucose-depleted environment of the inflamed joint. Here, we identify a mechanism that links metabolic adaptation to nutrient stress with the efficacy of tissue Mϕ to activate adaptive immunity by presenting antigen to tissue-invading T cells. Specifically, Mϕ populating the rheumatoid joint produce and respond to the small cytokine CCL18, which protects against cell death induced by glucose withdrawal. Mechanistically, CCL18 induces the transcription factor RFX5 that selectively upregulates glutamate dehydrogenase 1 (GLUD1), thus enabling glutamate utilization to support energy production. In parallel, RFX5 enhances surface expression of HLA-DR molecules, promoting Mϕ-dependent expansion of antigen-specific T cells. These data place CCL18 at the top of a RFX5-GLUD1 survival pathway and couple adaptability to nutrient conditions in the tissue environment to antigen-presenting function in autoimmune tissue inflammation.


Assuntos
Macrófagos , Fatores de Transcrição , Glucose , Humanos , Inflamação , Nutrientes , Fatores de Transcrição de Fator Regulador X
5.
Nat Cardiovasc Res ; 1(7): 634-648, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36860353

RESUMO

Pre-existent cardiovascular disease is a risk factor for weak anti-viral immunity, but underlying mechanisms remain undefined. Here, we report that patients with coronary artery disease (CAD) have macrophages (Mϕ) that actively suppress the induction of helper T cells reactive to two viral antigens: the SARS-CoV2 Spike protein and the Epstein-Barr virus (EBV) glycoprotein 350. CAD Mϕ overexpressed the methyltransferase METTL3, promoting the accumulation of N6-methyladenosine (m6A) in Poliovirus receptor (CD155) mRNA. m6A modifications of positions 1635 and 3103 in the 3'UTR of CD155 mRNA stabilized the transcript and enhanced CD155 surface expression. As a result, the patients' Mϕ abundantly expressed the immunoinhibitory ligand CD155 and delivered negative signals to CD4+ T cells expressing CD96 and/or TIGIT receptors. Compromised antigen-presenting function of METTL3hi CD155hi Mϕ diminished anti-viral T cell responses in vitro and in vivo. LDL and its oxidized form induced the immunosuppressive Mϕ phenotype. Undifferentiated CAD monocytes had hypermethylated CD155 mRNA, implicating post-transcriptional RNA modifications in the bone-marrow in shaping anti-viral immunity in CAD.

6.
Nat Immunol ; 22(12): 1551-1562, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811544

RESUMO

Misdirected immunity gives rise to the autoimmune tissue inflammation of rheumatoid arthritis, in which excess production of the cytokine tumor necrosis factor (TNF) is a central pathogenic event. Mechanisms underlying the breakdown of self-tolerance are unclear, but T cells in the arthritic joint have a distinctive metabolic signature of ATPlo acetyl-CoAhi proinflammatory effector cells. Here we show that a deficiency in the production of mitochondrial aspartate is an important abnormality in these autoimmune T cells. Shortage of mitochondrial aspartate disrupted the regeneration of the metabolic cofactor nicotinamide adenine dinucleotide, causing ADP deribosylation of the endoplasmic reticulum (ER) sensor GRP78/BiP. As a result, ribosome-rich ER membranes expanded, promoting co-translational translocation and enhanced biogenesis of transmembrane TNF. ERrich T cells were the predominant TNF producers in the arthritic joint. Transfer of intact mitochondria into T cells, as well as supplementation of exogenous aspartate, rescued the mitochondria-instructed expansion of ER membranes and suppressed TNF release and rheumatoid tissue inflammation.


Assuntos
Artrite Reumatoide/metabolismo , Ácido Aspártico/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Mitocôndrias/metabolismo , Membrana Sinovial/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , ADP-Ribosilação , Transferência Adotiva , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD4-Positivos/ultraestrutura , Estudos de Casos e Controles , Células Cultivadas , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Chaperona BiP do Retículo Endoplasmático/metabolismo , Feminino , Humanos , Masculino , Camundongos , Mitocôndrias/imunologia , Mitocôndrias/transplante , Mitocôndrias/ultraestrutura , Membrana Sinovial/imunologia , Membrana Sinovial/ultraestrutura , Fator de Necrose Tumoral alfa/genética
7.
Cell Metab ; 32(6): 967-980.e5, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264602

RESUMO

Autoimmune T cells in rheumatoid arthritis (RA) have a defect in mitochondrial oxygen consumption and ATP production. Here, we identified suppression of the GDP-forming ß subunit of succinate-CoA ligase (SUCLG2) as an underlying abnormality. SUCLG2-deficient T cells reverted the tricarboxylic acid (TCA) cycle from the oxidative to the reductive direction, accumulated α-ketoglutarate, citrate, and acetyl-CoA (AcCoA), and differentiated into pro-inflammatory effector cells. In AcCoAhi RA T cells, tubulin acetylation stabilized the microtubule cytoskeleton and positioned mitochondria in a perinuclear location, resulting in cellular polarization, uropod formation, T cell migration, and tissue invasion. In the tissue, SUCLG2-deficient T cells functioned as cytokine-producing effector cells and were hyperinflammatory, a defect correctable by replenishing the enzyme. Preventing T cell tubulin acetylation by tubulin acetyltransferase knockdown was sufficient to inhibit synovitis. These data link mitochondrial failure and AcCoA oversupply to autoimmune tissue inflammation.


Assuntos
Artrite Reumatoide/imunologia , Succinato-CoA Ligases/imunologia , Linfócitos T/imunologia , Acetilcoenzima A/imunologia , Adulto , Idoso , Animais , Citocinas/imunologia , Feminino , Humanos , Masculino , Camundongos , Microtúbulos/imunologia , Pessoa de Meia-Idade , Linfócitos T/citologia
8.
Sci Immunol ; 4(36)2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253642

RESUMO

The cause of most hypertensive disease is unclear, but inflammation appears critical in disease progression. However, how elevated blood pressure initiates inflammation is unknown, as are the effects of high blood pressure on innate and adaptive immune responses. We now report that hypertensive mice have increased T cell responses to antigenic challenge and develop more severe T cell-mediated immunopathology. A root cause for this is hypertension-induced erythrocyte adenosine 5'-triphosphate (ATP) release, leading to an increase in plasma ATP levels, which begins soon after the onset of hypertension and stimulates P2X7 receptors on antigen-presenting cells (APCs), increasing APC expression of CD86. Hydrolyzing ATP or blocking the P2X7 receptor eliminated hypertension-induced T cell hyperactivation. In addition, pharmacologic or genetic blockade of P2X7 receptor activity suppressed the progression of hypertension. Consistent with the results in mice, we also found that untreated human hypertensive patients have significantly elevated plasma ATP levels compared with treated hypertensive patients or normotensive controls. Thus, a hypertension-induced increase in extracellular ATP triggers augmented APC and T cell function and contributes to the immune-mediated pathologic changes associated with hypertensive disease.


Assuntos
Trifosfato de Adenosina/imunologia , Hipertensão/imunologia , Trifosfato de Adenosina/sangue , Adulto , Idoso , Animais , Antígenos/imunologia , Antígeno B7-2/imunologia , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Feminino , Hepatite/imunologia , Humanos , Hipertensão/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Ovalbumina/imunologia , Receptores Purinérgicos P2X7/genética , Linfócitos T/imunologia
9.
Br J Pharmacol ; 175(22): 4239-4252, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30153328

RESUMO

BACKGROUND AND PURPOSE: Angiotensin-converting enzyme (ACE), an important part of the renin-angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung, liver and kidney, while an ACE inhibitor (ACEI) promotes physiological tissue repair in these organs. The mechanism is closely related to TGF-ß1 pathways. However, the reported effects of applying ACEIs during scar formation are unclear. Hence, we explored the anti-fibrotic effects of an ACEI and the molecular mechanisms involved in a mouse scar model. EXPERIMENTAL APPROACH: After a full-thickness skin wound operation, ACE wild-type mice were randomly assigned to receive either ramipril, losartan or hydralazine p.o. ACE knockout (KO) mice and negative control mice only received vehicle (water). Wound/scar widths during wound healing and histological examinations were recorded at the final day. The ability of ACEI to reduce fibrosis via TGF-ß1 signalling was evaluated in vitro and in vivo. KEY RESULTS: ACE KO mice and mice that received ramipril showed narrower wound/scar width, reduced fibroblast proliferation, decreased collagen and TGF-ß1 expression. ACEI attenuated the phosphorylation of small mothers against decapentaplegic (Smad2/3) and TGF-ß-activated kinase 1 (TAK1) both in vitro and in vivo. The expression of ACE-related peptides varied in murine models with different drug treatments. CONCLUSIONS AND IMPLICATIONS: ACEI showed anti-fibrotic properties in scar formation by mediating downstream peptides to suppress TGF-ß1/Smad and TGF-ß1/TAK1 pathways. These findings suggest that dual inhibition of Smad and TAK1 signalling by ACEI is a useful strategy for the development of new anti-fibrotic agents.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/antagonistas & inibidores , Animais , Modelos Animais de Doenças , MAP Quinase Quinase Quinases/deficiência , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Smad/metabolismo
10.
Photosynth Res ; 137(1): 69-83, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29330702

RESUMO

In higher plant chloroplasts, the plastid-encoded RNA polymerase (PEP) consists of four catalytic subunits and numerous nuclear-encoded accessory proteins, including pTAC10, an S1-domain-containing protein. In this study, pTAC10 knockout lines were characterized. Two ptac10 mutants had an albino phenotype and severely impaired chloroplast development. The pTAC10 genomic sequence fused to a four-tandem MYC tag driven by its own promoter functionally complemented the ptac10-1 mutant phenotype. pTAC10 was present in both the chloroplast stroma and thylakoids. Two-dimensional blue native polyacrylamide gel electrophoresis (BN-PAGE), and immunoblotting assays showed that pTAC10:MYC co-migrates with one of the PEP core subunits, RpoB. A comprehensive investigation of the plastid gene expression profiles by quantitative RT-PCR revealed that, compared with wild-type plants, the abundance of PEP-dependent plastid transcripts is severely decreased in the ptac10-1 mutant, while the amount of plastid transcripts exclusively transcribed by NEP either barely changes or even increases. RNA blot analysis confirmed that PEP-dependent chloroplast transcripts, including psaB, psbA and rbcL, substantially decrease in the ptac10-1 mutant. Immunoblotting showed reduced accumulation of most chloroplast proteins in the ptac10 mutants. These data indicate the essential role of pTAC10 in plastid gene expression and plastid development. pTAC10 interacts with chloroplast-targeted casein kinase 2 (cpCK2) in vitro and in vivo and can be phosphorylated by Arabidopsis cpCK2 in vitro at sites Ser95, Ser396 and Ser434. RNA-EMSA assays showed that pTAC10 is able to bind to the psbA, atpE and accD transcripts, suggesting a non-specific RNA-binding activity of pTAC10. The RNA affinity of pTAC10 was enhanced by phosphorylation and decreased by the amino acid substitution Ser434-Ala of pTAC10. These data show that pTAC10 is essential for plastid gene expression in Arabidopsis and that it can be phosphorylated by cpCK2.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Caseína Quinase II/metabolismo , Proteínas de Cloroplastos/metabolismo , Plastídeos/genética , Substituição de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Caseína Quinase II/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Fosforilação , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Plantas Geneticamente Modificadas , Domínios Proteicos , RNA de Plantas/metabolismo , Tilacoides/metabolismo
11.
Am J Physiol Renal Physiol ; 314(4): F531-F542, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187372

RESUMO

Diabetic nephropathy is a major cause of end-stage renal disease in developed countries. While angiotensin-converting enzyme (ACE) inhibitors are used to treat diabetic nephropathy, how intrarenal ACE contributes to diabetic renal injury is uncertain. Here, two mouse models with different patterns of renal ACE expression were studied to determine the specific contribution of tubular vs. glomerular ACE to early diabetic nephropathy: it-ACE mice, which make endothelial ACE but lack ACE expression by renal tubular epithelium, and ACE 3/9 mice, which lack endothelial ACE and only express renal ACE in tubular epithelial cells. The absence of endothelial ACE normalized the glomerular filtration rate and endothelial injury in diabetic ACE 3/9 mice. However, these mice developed tubular injury and albuminuria and displayed low renal levels of megalin that were similar to those observed in diabetic wild-type mice. In diabetic it-ACE mice, despite hyperfiltration, the absence of renal tubular ACE greatly reduced tubulointerstitial injury and albuminuria and increased renal megalin expression compared with diabetic wild-type and diabetic ACE 3/9 mice. These findings demonstrate that endothelial ACE is a central regulator of the glomerular filtration rate while tubular ACE is a key player in the development of tubular injury and albuminuria. These data suggest that tubular injury, rather than hyperfiltration, is the main cause of microalbuminuria in early diabetic nephropathy.


Assuntos
Albuminúria/enzimologia , Diabetes Mellitus Experimental/enzimologia , Nefropatias Diabéticas/enzimologia , Túbulos Renais/enzimologia , Peptidil Dipeptidase A/metabolismo , Albuminúria/genética , Albuminúria/patologia , Albuminúria/fisiopatologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Células Endoteliais/enzimologia , Taxa de Filtração Glomerular , Glomérulos Renais/enzimologia , Glomérulos Renais/fisiopatologia , Túbulos Renais/patologia , Túbulos Renais/fisiopatologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Knockout , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , RNA Interferente Pequeno/genética , Estreptozocina
12.
Stroke ; 48(9): 2557-2564, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28698257

RESUMO

BACKGROUND AND PURPOSE: Hypertension is the major risk factor for stroke. Recent work unveiled that hypertension is associated with chronic neuroinflammation; microglia are the major players in neuroinflammation, and the activated microglia elevate sympathetic nerve activity and blood pressure. This study is to understand how brain homeostasis is kept from hypertensive disturbance and microglial activation at the onset of hypertension. METHODS: Hypertension was induced by subcutaneous delivery of angiotensin II, and blood pressure was monitored in conscious animals. Microglial activity was analyzed by flow cytometry and immunohistochemistry. Antibody, pharmacological chemical, and recombinant cytokine were administered to the brain through intracerebroventricular infusion. Microglial depletion was performed by intracerebroventricular delivering diphtheria toxin to CD11b-diphtheria toxin receptor mice. Gene expression profile in sympathetic controlling nucleus was analyzed by customized qRT-PCR array. RESULTS: Transforming growth factor-ß (TGF-ß) is constitutively expressed in the brains of normotensive mice. Removal of TGF-ß or blocking its signaling before hypertension induction accelerated hypertension progression, whereas supplementation of TGF-ß1 substantially suppressed neuroinflammation, kidney norepinephrine level, and blood pressure. By means of microglial depletion and adoptive transfer, we showed that the effects of TGF-ß on hypertension are mediated through microglia. In contrast to the activated microglia in established hypertension, the resting microglia are immunosuppressive and important in maintaining neural homeostasis at the onset of hypertension. Further, we profiled the signature molecules of neuroinflammation and neuroplasticity associated with hypertension and TGF-ß by qRT-PCR array. CONCLUSIONS: Our results identify that TGF-ß-modulated microglia are critical to keeping brain homeostasis responding to hypertensive disturbance.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Hipertensão/imunologia , Microglia/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Transferência Adotiva , Angiotensina II/toxicidade , Animais , Pressão Sanguínea/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Antígeno CD11b , Toxina Diftérica , Citometria de Fluxo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/fisiopatologia , Imuno-Histoquímica , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Norepinefrina/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Sistema Nervoso Simpático , Transcriptoma , Fator de Crescimento Transformador beta1/imunologia , Vasoconstritores/toxicidade
13.
Blood ; 130(3): 328-339, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28515091

RESUMO

Angiotensin-converting enzyme (ACE) inhibitors are widely used to reduce blood pressure. Here, we examined if an ACE is important for the antibacterial effectiveness of neutrophils. ACE knockout mice or mice treated with an ACE inhibitor were more susceptible to bacterial infection by methicillin-resistant Staphylococcus aureus (MRSA). In contrast, mice overexpressing ACE in neutrophils (NeuACE mice) have increased resistance to MRSA and better in vitro killing of MRSA, Pseudomonas aeruginosa, and Klebsiella pneumoniae ACE overexpression increased neutrophil production of reactive oxygen species (ROS) following MRSA challenge, an effect independent of the angiotensin II AT1 receptor. Specifically, as compared with wild-type (WT) mice, there was a marked increase of superoxide generation (>twofold, P < .0005) in NeuACE neutrophils following infection, whereas ACE knockout neutrophils decreased superoxide production. Analysis of membrane p47-phox and p67-phox indicates that ACE increases reduced NAD phosphate oxidase activity but does not increase expression of these subunits. Increased ROS generation mediates the enhanced bacterial resistance of NeuACE mice because the enhanced resistance is lost with DPI (an inhibitor of ROS production by flavoenzymes) inhibition. NeuACE granulocytes also have increased neutrophil extracellular trap formation and interleukin-1ß release in response to MRSA. In a mouse model of chemotherapy-induced neutrophil depletion, transfusion of ACE-overexpressing neutrophils was superior to WT neutrophils in treating MRSA infection. These data indicate a previously unknown function of ACE in neutrophil antibacterial defenses and suggest caution in the treatment of certain individuals with ACE inhibitors. ACE overexpression in neutrophils may be useful in boosting the immune response to antibiotic-resistant bacterial infection.


Assuntos
Resistência à Doença/genética , Imunidade Inata , Neutrófilos/imunologia , Peptidil Dipeptidase A/imunologia , Infecções Estafilocócicas/imunologia , Superóxidos/imunologia , Animais , Membrana Celular , Armadilhas Extracelulares/imunologia , Feminino , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Klebsiella pneumoniae , Masculino , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/imunologia , Camundongos , Camundongos Knockout , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Neutrófilos/citologia , Neutrófilos/transplante , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Pseudomonas aeruginosa , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/imunologia , Transdução de Sinais , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Superóxidos/metabolismo
14.
Lab Invest ; 97(7): 764-771, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28394320

RESUMO

Antigen processing and presentation through the MHC class II pathway is critical for activating T helper cells. Angiotensin-converting enzyme (ACE) is a carboxyl peptidase expressed by antigen-presenting cells. By analysis of ACE null (knockout), wild-type, and ACE-overexpressing (ACE10) mice and the antigen-presenting cells derived from these mice, we found that ACE has a physiological role in the processing of peptides for MHC class II presentation. The efficiency of presenting MHC class II epitopes from ovalbumin (OVA) and hen egg lysosome is markedly affected by cellular ACE levels. Mice overexpressing ACE in myeloid cells have a much more vigorous CD4+ T-cell and antibody response when immunized with OVA. ACE is present in the endosomal pathway where MHC class II peptide processing and loading occur. The efficiency of MHC class II antigen presentation can be altered by ACE overexpression or ACE pharmacological inhibition. Thus, ACE is a dynamic participant in processing MHC class II peptides. Manipulation of ACE expression by antigen-presenting cells may prove to be a novel strategy to alter the immune response.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Células Cultivadas , Camundongos , Camundongos Knockout , Ovalbumina/imunologia , Ovalbumina/metabolismo , Peptidil Dipeptidase A/imunologia , Peptidil Dipeptidase A/metabolismo
15.
F1000Res ; 52016.
Artigo em Inglês | MEDLINE | ID: mdl-27018193

RESUMO

Angiotensin-converting enzyme (ACE) converts angiotensin I to the vasoconstrictor angiotensin II and thereby plays an important role in blood pressure control. However, ACE is relatively non-specific in its substrate specificity and cleaves many other peptides. Recent analysis of mice overexpressing ACE in monocytes, macrophages, and other myelomonocytic cells shows that these animals have a marked increase in resistance to experimental melanoma and to infection by Listeria monocytogenes or methicillin-resistant Staphylococcus aureus (MRSA). Several other measures of immune responsiveness, including antibody production, are enhanced in these animals. These studies complement a variety of studies indicating an important role of ACE in the immune response.

16.
Circ Res ; 117(10): 858-69, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26294657

RESUMO

RATIONALE: Chronic inflammation is a major contributor to the progressive pathology of hypertension, and T-cell activation is required for the genesis of hypertension. However, the precise role of myeloid cells in this process is unclear. OBJECTIVE: To characterize and understand the role of peripheral myeloid cells in the development of hypertension. METHODS AND RESULTS: We examined myeloid cells in the periphery of hypertensive mice and found that increased numbers of CD11b(+)Gr1(+) myeloid cells in blood and the spleen are a characteristic of 3 murine models of experimental hypertension (angiotensin II, L-NG-nitroarginine methyl ester, and high salt). These cells express surface markers and transcription factors associated with immaturity and immunosuppression. Also, they produce hydrogen peroxide to suppress T-cell activation. These are characteristics of myeloid-derived suppressor cells (MDSCs). Depletion of hypertensive MDSCs increased blood pressure and renal inflammation. In contrast, adoptive transfer of wild-type MDSCs to hypertensive mice reduced blood pressure, whereas the transfer of nicotinamide adenine dinucleotide phosphate oxidase 2-deficient MDSCs did not. CONCLUSION: The accumulation of MDSCs is a characteristic of experimental models of hypertension. MDSCs limit inflammation and the increase of blood pressure through the production of hydrogen peroxide.


Assuntos
Pressão Sanguínea , Hipertensão/imunologia , Células Mieloides/imunologia , Nefrite/imunologia , Transferência Adotiva , Angiotensina II , Animais , Antígenos Ly/metabolismo , Antígeno CD11b/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/prevenção & controle , Tolerância Imunológica , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Células Mieloides/transplante , NADPH Oxidase 2 , NADPH Oxidases/deficiência , NADPH Oxidases/genética , NG-Nitroarginina Metil Éster , Nefrite/metabolismo , Nefrite/fisiopatologia , Nefrite/prevenção & controle , Transdução de Sinais , Sódio na Dieta , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo
17.
Mol Plant ; 7(1): 206-17, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23956074

RESUMO

Plastid-encoded RNA polymerase (PEP) is closely associated with numerous factors to form PEP complex for plastid gene expression and chloroplast development. However, it is not clear how PEP complex are regulated in chloroplast. Here, one thioredoxin-like fold protein, Arabidopsis early chloroplast biogenesis 1 (AtECB1), an allele of MRL7, was identified to regulate PEP function and chloroplast biogenesis. The knockout lines for AtECB1 displayed albino phenotype and impaired chloroplast development. The transcripts of PEP-dependent plastid genes were barely detected, suggesting that the PEP activity is almost lost in atecb1-1. Although AtECB1 was not identified in PEP complex, a yeast two-hybrid assay and pull-down experiments demonstrated that it can interact with Trx Z and FSD3, two intrinsic subunits of PEP complex, respectively. This indicates that AtECB1 may play a regulatory role for PEP-dependent plastid gene expression through these two subunits. AtECB1 contains a ßαßαßßα structure in the thioredoxin-like fold domain and lacks the typical C-X-X-C active site motif. Insulin assay demonstrated that AtECB1 harbors disulfide reductase activity in vitro using the purified recombinant AtECB1 protein. This showed that this thioredoxin-like fold protein, AtECB1 also has the thioredoxin activity. AtECB1 may play a role in thioredoxin signaling to regulate plastid gene expression and chloroplast development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , NADH NADPH Oxirredutases/metabolismo , Tiorredoxinas/química , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Tiorredoxinas de Cloroplastos/metabolismo , Cloroplastos/enzimologia , Cloroplastos/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Técnicas de Inativação de Genes , Dados de Sequência Molecular , Transporte Proteico , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
18.
Physiol Plant ; 148(3): 408-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23082802

RESUMO

Transcriptionally active chromosome (TAC) is a fraction of protein/DNA complexes with RNA polymerase activity in the plastid. However, the function of most TAC proteins remains unknown. Here, we isolated two allelic mutants of the gene for a TAC component, TAC7, and performed functional analysis in plastid gene expression and chloroplast development in Arabidopsis. tac7-1 is a mutant with a premature translation termination isolated from a population treated with ethyl methane sulfonate, and tac7-2 is a transfer-DNA tagging mutant. Both of them showed an albino phenotype when grown under normal light conditions, and a few appressed membranes were observed inside the defective chloroplasts. These data indicate that TAC7 is important for thylakoid biogenesis. The TAC7 gene encodes an uncharacterized 161 amino acids polypeptide localized in chloroplast. The transcriptional levels of plastid-encoded polymerase (PEP)-dependent genes were downregulated in tac7-2, suggesting that PEP activity was decreased in the mutant. Yeast two-hybrid assay shows that TAC7 can interact with the four TAC components including FLN1, TAC10, TAC12 and TAC14 which are involved in redox state changes, phosphorylation processes and phytochrome-dependent light signaling, respectively, These data indicate that TAC7 plays an important role for TAC to regulate PEP-dependent chloroplast gene expression and chloroplast development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/genética , Cromossomos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Núcleo Celular/metabolismo , Cloroplastos/ultraestrutura , Genes de Plantas/genética , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Filogenia , Ligação Proteica , Transporte Proteico , Frações Subcelulares/metabolismo , Tilacoides/metabolismo , Tilacoides/ultraestrutura
19.
Plant Physiol ; 157(4): 1733-45, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22010110

RESUMO

The SET domain-containing protein, pTAC14, was previously identified as a component of the transcriptionally active chromosome (TAC) complexes. Here, we investigated the function of pTAC14 in the regulation of plastid-encoded bacterial-type RNA polymerase (PEP) activity and chloroplast development. The knockout of pTAC14 led to the blockage of thylakoid formation in Arabidopsis (Arabidopsis thaliana), and ptac14 was seedling lethal. Sequence and transcriptional analysis showed that pTAC14 encodes a specific protein in plants that is located in the chloroplast associated with the thylakoid and that its expression depends on light. In addition, the transcript levels of all investigated PEP-dependent genes were clearly reduced in the ptac14-1 mutants, while the accumulation of nucleus-encoded phage-type RNA polymerase-dependent transcripts was increased, indicating an important role of pTAC14 in maintaining PEP activity. pTAC14 was found to interact with pTAC12/HEMERA, another component of TACs that is involved in phytochrome signaling. The data suggest that pTAC14 is essential for proper chloroplast development, most likely by affecting PEP activity and regulating PEP-dependent plastid gene transcription in Arabidopsis together with pTAC12.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Plastídeos/genética , Sequência de Aminoácidos , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Sequência de Bases , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , DNA de Plantas/química , DNA de Plantas/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Luz , Metiltransferases , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , Mapeamento de Interação de Proteínas , RNA Mensageiro/genética , RNA de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Tilacoides/fisiologia , Tilacoides/efeitos da radiação , Tilacoides/ultraestrutura , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...