Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(13): 3375-3378, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390134

RESUMO

We experimentally demonstrated polarization multiplexing schemes in a tilted fiber grating (TFBG) to achieve polarization-independent fiber-optic surface plasmon resonance (SPR) sensors. The first used two orthogonal polarized lights separated by a polarization beam splitter (PBS) that are p-polarized in polarization-maintaining fiber (PMF) and precisely aligned with the tilted grating plane, so as to achieve the transmission of p-polarized light in two opposite directions of the Au-coated TFBG to excite SPR. Alternatively, polarization multiplexing was also achieved by exploring two polarization components to achieve the SPR effect through a Faraday rotator mirror (FRM). The SPR reflection spectra are polarization-independent of the light source and any perturbations to fibers, which are explained by the superposition of p- and s-polarized transmission spectra in equal proportions. The spectrum optimization is presented to reduce the proportion of the s-polarization component. A polarization-independent TFBG-based SPR refractive index (RI) sensor with a wavelength sensitivity of 555.14 nm/RIU and an amplitude sensitivity of 1724.92 dB/RIU for small changes is obtained, exhibiting unique advantages of minimizing the polarization alterations by mechanical perturbations.


Assuntos
Tecnologia de Fibra Óptica , Ressonância de Plasmônio de Superfície
2.
Appl Opt ; 62(2): 291-297, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630227

RESUMO

Microchannels fabricated by femtosecond laser-assisted chemical etching are of great use in biochemical analysis. In this paper, we study the morphology change of etched microchannels in fused silica by controlling the laser scan speed, and we find a significant difference between the chemical etched length and volume. The fabricated microchannels would gradually become tapered along the scan direction, which influences the flow of the hydrofluoric (HF) reagent and the etching rate. As a result, the difference ratios of the etched length and volume, respectively, reach -5.56% and -41.83% followed by the scan speed increasing from 5 to 200 µm/s. Microchannels with polarization independence and better aspect ratio could be obtained in a high-speed-scan mode. We suggest that laser-induced structural transformation from interconnected microcracks to nanogratings could be responsible for this change. Aforementioned results offer a feasible approach to achieve polarization-independent microchannels, which is in favor of accelerating the fabrication of three-dimensional microfluidic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...