Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Plants (Basel) ; 13(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38931036

RESUMO

Thorough and precise gene structure annotations are essential for maximizing the benefits of genomic data and unveiling valuable genetic insights. The cucumber genome was first released in 2009 and updated in 2019. To increase the accuracy of the predicted gene models, 64 published RNA-seq data and 9 new strand-specific RNA-seq data from multiple tissues were used for manual comparison with the gene models. The updated annotation file (V3.1) contains an increased number (24,145) of predicted genes compared to the previous version (24,317 genes), with a higher BUSCO value of 96.9%. A total of 6231 and 1490 transcripts were adjusted and newly added, respectively, accounting for 31.99% of the overall gene tally. These newly added and adjusted genes were renamed (CsaV3.1_XGXXXXX), while genes remaining unaltered preserved their original designations. A random selection of 21 modified/added genes were validated using RT-PCR analyses. Additionally, tissue-specific patterns of gene expression were examined using the newly obtained transcriptome data with the revised gene prediction model. This improved annotation of the cucumber genome will provide essential and accurate resources for studies in cucumber.

2.
Inorg Chem ; 63(25): 11572-11582, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38866714

RESUMO

Recently synthesized two-dimensional (2D) monolayer quasi-hexagonal-phase fullerene (qHPC60) demonstrates excellent thermodynamic stability. Within this monolayer, each fullerene cluster is surrounded by six adjacent C60 cages along an equatorial plane and is connected by both C-C single bonds and [2 + 2] cycloaddition bonds that serve as bridges. In this study, we investigate the stability mechanism of the 2D qHPC60 monolayer by examining the electronic structure and chemical bonding through state-of-the-art theoretical methodologies. Density functional theory (DFT) studies reveal that 2D qHPC60 possesses a moderate direct electronic band gap of 1.46 eV, close to the experimental value (1.6 eV). It is found that the intermolecular bridge bonds play a crucial role in enhancing the charge flow and redistribution among C60 cages, leading to the formation of dual π-aromaticity within the C60 sphere and stabilizing the 2D framework structure. Furthermore, we identify a series of delocalized superatom molecular orbitals (SAMOs) within the 2D qHPC60 monolayer, exhibiting atomic orbital-like behavior and hybridization to form nearly free-electron (NFE) bands with σ/π bonding and σ*/π* antibonding properties. Our findings provide insights into the design and potential applications of NFE bands derived from SAMOs in 2D qHPC60 monolayers.

3.
Aging (Albany NY) ; 16(12): 10216-10238, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943627

RESUMO

This study aimed to reveal the specific role of early growth response protein 1 (EGR1) and nuclear receptor 4A3 (NR4A3) in nucleus pulposus cells (NPCs) and the related molecular mechanism and to identify a new strategy for treating intervertebral disc degeneration (IVDD). Bioinformatics analysis was used to explore and predict IVDD-related differentially expressed genes, and chromatin immunoprecipitation sequencing (ChIP-seq) revealed NR4A3 as the EGR1 target gene. An in vitro NPC model induced by tributyl hydrogen peroxide (TBHP) and a rat model induced by fibrous ring acupuncture were established. Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemical staining, immunofluorescence staining, and flow cytometry were used to detect the effects of EGR1 and NR4A3 knockdown and overexpression on NPC apoptosis and the expression of extracellular matrix (ECM) anabolism-related proteins. Interactions between EGR1 and NR4A3 were analyzed via ChIP-qPCR and dual luciferase assays. EGR1 and NR4A3 expression levels were significantly higher in severely degenerated discs (SDD) than in mildly degenerated discs (MDD), indicating that these genes are important risk factors in IVDD progression. ChIP-seq and RNA-seq revealed NR4A3 as a direct downstream target of EGR1, and this finding was verified by ChIP-qPCR and dual luciferase reporter experiments. Remarkably, the rescue experiments showed that EGR1 promotes TBHP-induced NPC apoptosis and impairs ECM anabolism, dependent on elevated NR4A3 expression. In summary, the EGR1-NR4A3 axis mediates the progression of NPC apoptosis and ECM impairment and is a potential therapeutic target in IVDD.


Assuntos
Apoptose , Proteína 1 de Resposta de Crescimento Precoce , Degeneração do Disco Intervertebral , Núcleo Pulposo , Estresse Oxidativo , Receptores dos Hormônios Tireóideos , Regulação para Cima , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Animais , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Ratos , Masculino , Humanos , Receptores dos Hormônios Tireóideos/metabolismo , Receptores dos Hormônios Tireóideos/genética , Ratos Sprague-Dawley , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Pessoa de Meia-Idade , Adulto , Proteínas do Tecido Nervoso
4.
Aging (Albany NY) ; 16(6): 5249-5263, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38460960

RESUMO

BACKGROUND: The Golgi apparatus (GA) is crucial for protein synthesis and modification, and regulates various cellular processes. Dysregulation of GA can lead to pathological conditions like neoplastic growth. GA-related genes (GARGs) mutations are commonly found in cancer, contributing to tumor metastasis. However, the expression and prognostic significance of GARGs in osteosarcoma are yet to be understood. METHODS: Gene expression and clinical data of osteosarcoma patients were obtained from the TARGET and GEO databases. A consensus clustering analysis identified distinct molecular subtypes based on GARGs. Discrepancies in biological processes and immunological features among the subtypes were explored using GSVA, ssGSEA, and Metascape analysis. A GARGs signature was constructed using Cox regression. The prognostic value of the GARGs signature in osteosarcoma was evaluated using Kaplan-Meier curves and a nomogram. RESULTS: Two GARG subtypes were identified, with Cluster A showing better prognosis, immunogenicity, and immune cell infiltration than Cluster B. A novel risk model of 3 GARGs was established using the TARGET dataset and validated with independent datasets. High-risk patients had poorer overall survival, and the GARGs signature independently predicted osteosarcoma prognosis. Combining risk scores and clinical characteristics in a nomogram improved prediction performance. Additionally, we discovered Stanniocalcin-2 (STC2) as a significant prognostic gene highly expressed in osteosarcoma and potential disease biomarker. CONCLUSIONS: Our study revealed that patients with osteosarcoma can be divided into two GARGs subgroups. Furthermore, we have developed a GARGs prognostic signature that can accurately forecast the prognosis of osteosarcoma patients.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Prognóstico , Osteossarcoma/genética , Nomogramas , Complexo de Golgi , Neoplasias Ósseas/genética
5.
Aging (Albany NY) ; 16(6): 5370-5386, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38484139

RESUMO

Intervertebral disc degeneration (IVDD) has been considered a major cause of low back pain. Therefore, further molecular subtypes of IVDD and identification of potential critical genes are urgently needed. First, consensus clustering was used to classify patients with IVDD into two subtypes and key module genes for subtyping were identified using weighted gene co-expression network analysis (WGCNA). Then, key module genes for the disease were identified by WGCNA. Subsequently, SVM and GLM were used to identify hub genes. Based on the above genes, a nomogram was constructed to predict the subtypes of IVDD. Finally, we find that ROM1 is lowered in IVDD and is linked to various cancer prognoses. The present work offers innovative diagnostic and therapeutic biomarkers for molecular subtypes of IVDD.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Humanos , Anel Fibroso/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Transcriptoma
6.
Inorg Chem ; 63(14): 6173-6183, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38530927

RESUMO

Unfolding the solution coordination chemistry of high-valent transuranium elements with the "CHON"-type ligands is important to understand the fundamental chemistry of actinides and to design more efficient extractants for partitioning of transuranium elements in advanced nuclear fuel cycles. Here, the complexation of a hexavalent neptunyl ion (NpO22+ or Np(VI)) with oxydiacetic acid (ODA) has been systematically investigated in comparison with its amide analogues N,N-dimethyl-3-oxa-glutaramic acid (DMOGA) and N,N,N',N'-tetramethyl-3-oxa-glutaramide (TMOGA) both experimentally and computationally. The formation of both 1:1 and 1:2 complexes between Np(VI) and the three ligands was identified by spectrophotometry, and their stability constants were obtained and compared with those of hexavalent U(VI) and Pu(VI). The corresponding bonding nature is elucidated by using energy decomposition analysis (EDA), electrostatic potential (ESP), ELF contours, and natural orbitals for chemical valence (NOCV) methods, which shows that the Np-O bonds are essentially ionic in character and the unoccupied 6d orbitals of Np play a key role in enhancing the covalent interactions between Np(VI) and the three ligands.

7.
Aging (Albany NY) ; 16(4): 3694-3715, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38372699

RESUMO

BACKGROUND: Osteoporosis is a common endocrine metabolic bone disease, which may lead to severe consequences. However, the unknown molecular mechanism of osteoporosis, the observable side effects of present treatments and the inability to fundamentally improve bone metabolism seriously restrict the impact of prevention and treatment. The study aims to identify potential biomarkers from osteoclast progenitors, specifically peripheral blood monocytes on predicting the osteoporotic phenotype. METHODS: Datasets were obtained from Gene Expression Omnibus (GEO). Based on the differentially expressed genes (DEGs) and GSEA results, GO and KEGG analyses were performed using the DAVID database and Metascape database. PPI network, TF network, drug-gene interaction network, and ceRNA network were established to determine the hub genes. Its osteogenesis, migration, and proliferation abilities in bone marrow mesenchymal stem cells (BMSCs) were validated through RT-qPCR, WB, ALP staining, VK staining, wound healing assay, transwell assay, and CCK-8 assay. RESULTS: A total of 63 significant DEGs were screened. Functional and pathway enrichment analysis discovered that the functions of the significant DEGs (SDEGs) are mainly related to immunity and metal ions. A comprehensive evaluation of all the network analyses, PMAIP1 was defined as osteoporosis's core gene. This conclusion was further confirmed in clinical cohort data. A series of experiments demonstrated that the PMAIP1 gene can promote the osteogenesis, migration and proliferation of BMSC cells. CONCLUSIONS: All of these outcomes showed a new theoretical basis for further research in the treatment of osteoporosis, and PMAIP1 was identified as a potential biomarker for osteoporosis diagnosis and treatment.


Assuntos
Perfilação da Expressão Gênica , Osteoporose , Humanos , Perfilação da Expressão Gênica/métodos , Biomarcadores , Osteoporose/diagnóstico , Osteoporose/tratamento farmacológico , Osteoporose/genética , Redes Reguladoras de Genes , Cicatrização
8.
Sci Rep ; 13(1): 21316, 2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-38044363

RESUMO

Intervertebral disc degeneration (IDD) is the primary cause of neck and back pain. Obesity has been established as a significant risk factor for IDD. The objective of this study was to explore the molecular mechanisms affecting obesity and IDD by identifying the overlapping crosstalk genes associated with both conditions. The identification of specific diagnostic biomarkers for obesity and IDD would have crucial clinical implications. We obtained gene expression profiles of GSE70362 and GSE152991 from the Gene Expression Omnibus, followed by their analysis using two machine learning algorithms, least absolute shrinkage and selection operator and support vector machine-recursive feature elimination, which enabled the identification of C-X-C motif chemokine ligand 16 (CXCL16) as a shared diagnostic biomarker for obesity and IDD. Additionally, gene set variant analysis was used to explore the potential mechanism of CXCL16 in these diseases, and CXCL16 was found to affect IDD through its effect on fatty acid metabolism. Furthermore, correlation analysis between CXCL16 and immune cells demonstrated that CXCL16 negatively regulated T helper 17 cells to promote IDD. Finally, independent external datasets (GSE124272 and GSE59034) were used to verify the diagnostic efficacy of CXCL16. In conclusion, a common diagnostic biomarker for obesity and IDD, CXCL16, was identified using a machine learning algorithm. This study provides a new perspective for exploring the possible mechanisms by which obesity impacts the development of IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/diagnóstico , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Transcriptoma , Fatores de Risco , Obesidade/metabolismo , Biomarcadores/metabolismo , Disco Intervertebral/metabolismo , Quimiocina CXCL16/genética , Quimiocina CXCL16/metabolismo
9.
Aging (Albany NY) ; 15(22): 12794-12816, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37976137

RESUMO

Mitochondria play a vital role in osteosarcoma. Therefore, the purpose of this study was to investigate the potential role of mitochondrial-related genes (MRGs) in osteosarcoma. Based on 92 differentially expressed MRGs, osteosarcoma samples were divided into two subtypes using the nonnegative matrix factorization (NMF). Ultimately, a univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox analysis were performed to construct a prognostic risk model. The single-sample gene set enrichment analysis assessed the immune infiltration characteristics of osteosarcoma patients. Finally, we identified an osteosarcoma biomarker, malonyl-CoA decarboxylase (MLYCD), which showed downregulation. Osteosarcoma cells proliferation, migration, and invasion were effectively inhibited by the overexpression of MLYCD. Our findings will help us to further understand the molecular mechanisms of osteosarcoma and contribute to the discovery of new diagnostic biomarkers and therapeutic targets.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Prognóstico , Osteossarcoma/genética , Algoritmos , Mitocôndrias/genética , Neoplasias Ósseas/genética
10.
Aging (Albany NY) ; 15(19): 10272-10290, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37796192

RESUMO

Cancer-intrinsic immune evasion (IE) to cells is a critical factor in tumour growth and progression, yet the molecular characterization of IE genes (IEGs) in osteosarcoma remains underexplored. In this study, 85 osteosarcoma patients were comprehensively analyzed based on 182 IEGs, leading to the identification of two IE clusters linked to distinct biological processes and clinical outcomes. In addition, two IE clusters demonstrated diverse immune cell infiltration patterns, with IEGcluster A displaying increased levels compared to IEGcluster B. Moreover, an IE score was identified as an independent prognostic factor and nomogram may serve as a practical tool for the individual prognostic evaluation of patients with osteosarcoma. Finally, GBP1, a potential biomarker with high expression in osteosarcoma was identified. The findings of this study highlight the presence of two IE clusters, each associated with differing patient outcomes and immune infiltration properties. The IE score may serve to assess individual patient IE characteristics, enhance comprehension of immune features, and guide more efficacious treatment approaches.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Evasão da Resposta Imune , Microambiente Tumoral/genética , Prognóstico , Osteossarcoma/genética , Neoplasias Ósseas/genética
11.
Sci Rep ; 13(1): 17521, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845358

RESUMO

Studying the molecular mechanisms and regulatory functions of genes is crucial for exploring new approaches and tactics in cancer therapy. Studies have shown that the aberrant expression of PHF5A in tumors is linked to the origin and advancement of multiple cancers. However, its role in diagnosis, prognosis, and immunological prediction has not been comprehensively investigated in a pan-cancer analysis. Using several bioinformatic tools, we conducted a systematic examination of the potential carcinogenesis of PHF5A in various tumors from multiple aspects. Our analysis indicated that PHF5A expression varied between normal and tumor tissues and was linked to clinical diagnosis and prognosis in various cancers. The results confirmed a notable variation in the levels of PHF5A promoter methylation among several types of primary tumor and normal tissues and methylation of the PHF5A promoter played a guiding role in prognosis in some cancers. According to our findings, PHF5A played a critical role in tumor immunity and it might be an excellent target for anticancer immunotherapy. To sum up, PHF5A can be used in pan-cancer diagnostics, prognostics, and immunotherapy.


Assuntos
Neoplasias , Humanos , Prognóstico , Biomarcadores , Neoplasias/diagnóstico , Neoplasias/genética , Carcinogênese , Biologia Computacional , Transativadores , Proteínas de Ligação a RNA
12.
Cancer Cell Int ; 23(1): 215, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752544

RESUMO

BACKGROUND: The aim of this study was to determine the underlying potential mechanisms and function of DIO3OS, a lincRNA in osteosarcoma and clarify that DIO3OS can be used as a potential diagnostic biomarker and immunotherapeutic target. METHODS: The expression matrix data and clinical information were obtained from XENA platform of UCSC and GEO database as the test cohorts. The external validation cohort was collected from our hospital. Bioinformatics analysis was used to annotate the biological function of DIO3OS. Immune infiltration and immune checkpoint analysis were applied to evaluate whether DIO3OS can be used as an immunotherapeutic target. ROC curves and AUC were established to assess the diagnostic value of DIO3OS for differentiating patients from other subtypes sarcoma. The expression analysis was detected by qRT-PCR, western blot, and immunohistochemical. Wound healing assay and Transwell assay were applied to determine the migration and invasion function of DIO3OS in osteosarcoma cell lines. The tail vein injection osteosarcoma cells metastases model was used in this research. RESULTS: High expression of DIO3OS was identified as a risk lincRNA for predicting overall survival of osteosarcoma in test cohort. The outcomes of experiments in vitro and in vivo showed that low expression of DIO3OS limited osteosarcoma tumor metastasis with inhibiting TGF-ß signaling pathway. Immune checkpoint genes (CD200 and TNFRSF25) expressions were inhibited in the low DIO3OS expression group. The DIO3OS expression can be applied to reliably distinguish osteosarcoma from lipomatous neoplasms, myomatous neoplasms, nerve sheath tumors, and synovial-like neoplasms. This result was further validated in the validation cohort. CONCLUSIONS: In conclusion, our outcomes indicated that DIO3OS is a potential diagnostic and prognostic biomarker of osteosarcoma, emphasizing its potential as a target of immunotherapy to improve the treatment of osteosarcoma through TGF-ß signaling pathway. TRIAL REGISTRATION NUMBER: The present retrospectively study was approved by the Ethics Committee of The Second Affiliated Hospital of Nanchang University [Review (2020) No. (115)].

13.
Nat Chem ; 15(11): 1581-1590, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37550390

RESUMO

Although their zero- to two-dimensional counterparts are well known, three-dimensional chiral hybrid organic-inorganic perovskite single crystals have remained difficult because they contain no chiral components and their crystal phases belong to centrosymmetric achiral point groups. Here we report a general approach to grow single-crystalline 3D lead halide perovskites with chiroptical activity. Taking MAPbBr3 (MA, methylammonium) perovskite as a representative example, whereas achiral MAPbBr3 crystallized from precursors in solution by inverse temperature crystallization method, the addition of micro- or nanoparticles as nucleating agents promoted the formation of chiral crystals under a near equilibrium state. Experimental characterization supported by calculations showed that the chirality of the 3D APbX3 (where A is an ammonium ion and X is Cl, Br or mixed Cl-Br or Br-I) perovskites arises from chiral patterns of the A-site cations and their interaction with the [PbX6]4- octahedra in the perovskite structure. The chiral structure obeys the lowest-energy principle and thereby thermodynamically stable. The chiral 3D hybrid organic-inorganic perovskites served in a circularly polarized light photodetector prototype successfully.

14.
Exp Ther Med ; 26(1): 312, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37273754

RESUMO

Cartilage endplate (CEP) degeneration is considered one of the major causes of intervertebral disc degeneration (IDD), which causes non-specific neck and lower back pain. In addition, several non-coding RNAs (ncRNAs), including long ncRNAs, microRNAs and circular RNAs have been shown to be involved in the regulation of various diseases. However, the particular role of ncRNAs in CEP remains unclear. Identifying these ncRNAs and their interactions may prove to be is useful for the understanding of CEP health and disease. These RNA molecules regulate signaling pathways and biological processes that are critical for a healthy CEP. When dysregulated, they can contribute to the development disease. Herein, studies related to ncRNAs interactions and regulatory functions in CEP are reviewed. In addition, a summary of the current knowledge regarding the deregulation of ncRNAs in IDD in relation to their actions on CEP cell functions, including cell proliferation, apoptosis and extracellular matrix synthesis/degradation is presented. The present review provides novel insight into the pathogenesis of IDD and may shed light on future therapeutic approaches.

15.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240287

RESUMO

Although whole genome sequencing, genetic variation mapping, and pan-genome studies have been done on a large group of cucumber nuclear genomes, organelle genome information is largely unclear. As an important component of the organelle genome, the chloroplast genome is highly conserved, which makes it a useful tool for studying plant phylogeny, crop domestication, and species adaptation. Here, we have constructed the first cucumber chloroplast pan-genome based on 121 cucumber germplasms, and investigated the genetic variations of the cucumber chloroplast genome through comparative genomic, phylogenetic, haplotype, and population genetic structure analysis. Meanwhile, we explored the changes in expression of cucumber chloroplast genes under high- and low-temperature stimulation via transcriptome analysis. As a result, a total of 50 complete chloroplast genomes were successfully assembled from 121 cucumber resequencing data, ranging in size from 156,616-157,641 bp. The 50 cucumber chloroplast genomes have typical quadripartite structures, consisting of a large single copy (LSC, 86,339-86,883 bp), a small single copy (SSC, 18,069-18,363 bp), and two inverted repeats (IRs, 25,166-25,797 bp). Comparative genomic, haplotype, and population genetic structure results showed that there is more genetic variation in Indian ecotype cucumbers compared to other cucumber cultivars, which means that many genetic resources remain to be explored in Indian ecotype cucumbers. Phylogenetic analysis showed that the 50 cucumber germplasms could be classified into 3 types: East Asian, Eurasian + Indian, and Xishuangbanna + Indian. The transcriptomic analysis showed that matK were significantly up-regulated under high- and low-temperature stresses, further demonstrating that cucumber chloroplasts respond to temperature adversity by regulating lipid metabolism and ribosome metabolism. Further, accD has higher editing efficiency under high-temperature stress, which may contribute to the heat tolerance. These studies provide useful insight into genetic variation in the chloroplast genome, and established the foundation for exploring the mechanisms of temperature-stimulated chloroplast adaptation.


Assuntos
Cucumis sativus , Genoma de Cloroplastos , Filogenia , Cucumis sativus/genética , Temperatura , Transcriptoma , Cloroplastos/genética , Perfilação da Expressão Gênica , Variação Genética
16.
Front Bioeng Biotechnol ; 11: 1073238, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845177

RESUMO

Quiescence is a cellular state of reversible growth arrest required to maintain homeostasis and self-renewal. Entering quiescence allows the cells to remain in the non-dividing stage for an extended period of time and enact mechanisms to protect themselves from damage. Due to the extreme nutrient-deficient microenvironment in the intervertebral disc (IVD), the therapeutic effect of cell transplantation is limited. In this study, nucleus pulposus stem cells (NPSCs) were preconditioned into quiescence through serum starvation in vitro and transplanted to repair intervertebral disc degeneration (IDD). In vitro, we investigated apoptosis and survival of quiescent NPSCs in a glucose-free medium without fetal bovine serum. Non-preconditioned proliferating NPSCs served as controls. In vivo, the cells were transplanted into a rat model of IDD induced by acupuncture, and the intervertebral disc height, histological changes, and extracellular matrix synthesis were observed. Finally, to elucidate the mechanisms underlying the quiescent state of NPSCs, the metabolic patterns of the cells were investigated through metabolomics. The results revealed that quiescent NPSCs decreased apoptosis and increased cell survival when compared to proliferating NPSCs both in vitro and in vivo, as well as maintained the disc height and histological structure significantly better than that by proliferating NPSCs. Furthermore, quiescent NPSCs have generally downregulated metabolism and reduced energy requirements in response to a switch to a nutrient-deficient environment. These findings support that quiescence preconditioning maintains the proliferation and biological function potential of NPSCs, increases cell survival under the extreme environment of IVD, and further alleviates IDD via adaptive metabolic patterns.

17.
Cell Death Dis ; 14(2): 118, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781836

RESUMO

Esophageal squamous cell carcinoma (ESCC) is an upper gastrointestinal cancer with high morbidity and mortality. New strategies are urgently needed to prolong patients' survival. Through screening FDA-approved drugs, we found dasabuvir, a drug approved for hepatitis C virus (HCV) treatment, suppressed ESCC proliferation. Dasabuvir could inhibit the growth of ESCC cells in a time and dose-dependent manner and arrested cell cycle at the G0/G1 phase. The antitumor activity was further validated in vivo using patient-derived xenograft tumor models. In terms of mechanism, we unveil that dasabuvir is a Rho-associated protein kinase 1 (ROCK1) inhibitor. Dasabuvir can bind to ROCK1 and suppress its kinase activity, thus downregulating the phosphorylation of ERK1/2 by ROCK1 and the expression of cyclin-dependent kinase 4 (CDK4) and cyclin D1. These results provide evidence that dasabuvir suppresses ESCC growth in vivo and in vitro through blocking ROCK1/ERK signaling pathway.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , Proliferação de Células , 2-Naftilamina/uso terapêutico , Linhagem Celular Tumoral , Apoptose , Quinases Associadas a rho
18.
Oncogene ; 42(15): 1209-1223, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841865

RESUMO

Targeted therapy attempts are needed to enhance esophageal squamous cell carcinoma (ESCC) patients' overall survival and satisfaction of life. Nuclear factor erythroid 2-related factor 2 (NRF2), as a high-confidence cancer driver gene, controls the antioxidant response, metabolic balance and redox homeostasis in cancer and is regarded as a potent molecular target for cancer treatment. Here, we attempted to find a new NRF2 inhibitor and study the underlying molecular mechanism in ESCC. We found that up-regulated NRF2 protein was negatively correlated with patient prognosis and promoted tumor proliferation in ESCC. Moreover, Pizotifen malate (PZM), a FDA-approved medication, bound to the Neh1 domain of NRF2 and prevented NRF2 protein binding to the ARE motif of target genes, suppressing transcription activity of NRF2. PZM treatment suppressed tumor development in ESCC PDX model by inducing ferroptosis via down-regulating the transcription of GPX4, GCLC, ME1 and G6PD. Our study illustrates that the over expression of NRF2 indicates poor prognosis and promotes tumor proliferation in ESCC. PZM, as a novel NRF2 inhibitor, inhibits the tumor growth by inducing ferroptosis and elucidates a potent NRF2-based therapy strategy for patients with ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Malatos/uso terapêutico , Pizotilina/uso terapêutico , Carcinoma de Células Escamosas/patologia , Ferroptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
19.
Cancer Cell Int ; 22(1): 322, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36244998

RESUMO

Osteosarcoma is a highly malignant tumor, with very high disability and fatality rates. However, the overall prognosis is not optimistic. Pyroptosis is a newly discovered cell death modality accompanied by inflammation, which is closely related to varieties of cancers. In this study, the RNA-seq data were downloaded from public databases, the differences in the expression of the pyroptosis-related genes (PRGs) were identified, and the six PRGs signature was established through the univariate and LASSO Cox analysis. The patients were grouped according to the PRGs signature, and the prognosis between the two groups was further compared. In addition, a ten pyroptosis-related lncRNAs (PRLs) prognostic signature was also constructed. Through functional analysis of the differentially expressed genes (DEGs), the immune-related pathways were found to be enriched. The Pearson correlation analysis showed a strong correlation between the pyroptosis-related biomarkers. Finally, we identified a promising biomarker, CHMP4C, which is highly expressed in osteosarcoma. Overexpression of CHMP4C promoted the proliferation, migration and invasion of the osteosarcoma cell. Our results thus provide new evidence for exploring prognostic biomarkers and therapeutic targets of osteosarcoma.

20.
Mol Ther Oncolytics ; 27: 61-72, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36284716

RESUMO

Epidemiological and mechanistic studies suggest that some US Food and Drug Administration (FDA)-approved drugs can reduce the incidence of cancer and inhibit tumor growth. Therefore, investigating FDA-approved drugs for cancer chemoprevention is a promising strategy. In this study, we screened FDA-approved drugs and found that azelnidipine, a Ca channel blocker widely used in the treatment of hypertension, inhibits the growth of esophageal squamous cell carcinoma (ESCC) in vitro and in vivo. We identified that MEK1/2 were direct targets of azelnidipine through pull-down assay and cellular thermal shift assay. Azelnidipine could suppress kinase activity of MEK1/2 through in vitro kinase assay. Hypophosphorylation of ERK1/2 decreased the levels of Cyclin D1/CDK6 in ESCC cells after azelnidipine treatment. More importantly, azelnidipine, like trametinib, inhibited the growth of ESCC in vivo. In conclusion, azelnidipine, a novel dual MEK1/2 inhibitor, exerted antitumor effects against ESCC cell lines and patient-derived xenograft in ESCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...