Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142199, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692366

RESUMO

Industrial hemp (Cannabis sativa L.) has great application potential in heavy metal-polluted soils owing to its safe non-food utilization. However, the fate of heavy metals in different varieties of hemp planted in strongly contaminated natural soils remains unknown. Here, we investigated the growth, heavy metal uptake, distribution, and transfer of nine hemp varieties in soils strongly contaminated with Cu, As, Cd, and Pb. Hemp variety and metal type were the main factors affecting the growth and heavy metal uptake in hemp. The nine hemp varieties grew well in the contaminated soils; however, differences existed among the varieties. The biomass of Z3 reached 5669.1 kg hm-1, whereas that of Yunma No. 1 was only 51.8 % of Z3. The plant height, stalk diameter, and stalk bark thickness of Z3 were greater than those of the other varieties, reaching 168 cm, 9.2 mm, and 0.56 mm, respectively. Permanova's analysis revealed that the total effects of Cu, As, Cd, and Pb on the growth of the nine hemp varieties reached 60 %, with leaf As having the greatest effect, reaching 16 %. , Even in strongly contaminated soils, the nine varieties showed poor Cu, As, Cd, and Pb uptake. Most of the Cu, As, Cd, and Pb were retained in the root, reaching 57.7-72.4, 47.6-64.7, 76.0-92.9, and 70.0-87.8 %, respectively. Overall, the Cu, As, Cd, and Pb uptake of Wanma No.1 was the highest among the nine varieties, whereas that of Guangxi Bama was the lowest. These results indicate that hemp is a viable alternative for phytoattenuation in soils contaminated with heavy metals because of its ability to tolerate and accumulate Cu, As, Cd, and Pb in its roots, and Guangxi Bama is superior to the other varieties considering the safe utilization of hemp products.


Assuntos
Arsênio , Biodegradação Ambiental , Cádmio , Cannabis , Cobre , Chumbo , Metais Pesados , Poluentes do Solo , Solo , Cannabis/crescimento & desenvolvimento , Cannabis/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Metais Pesados/análise , Metais Pesados/metabolismo , Chumbo/metabolismo , Chumbo/análise , Cádmio/metabolismo , Cádmio/análise , Arsênio/metabolismo , Arsênio/análise , Cobre/análise , Solo/química , Biomassa , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
2.
Waste Manag ; 175: 254-264, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219463

RESUMO

Biogas slurry (BS) is widely considered as a source of organic matter and nutrients for improving soil organic carbon (SOC) sequestration and crop production in agroecosystems. Microbial necromass C (MNC) is considered one of the major precursors of SOC sequestration, which is regulated by soil microbial anabolism and catabolism. However, the microbial mechanisms through which BS application increases SOC accumulation in paddy soils have not yet been elucidated. A 12-year field experiment with four treatments (CK, no fertilizers; CF, chemical fertilizer application; BS1 and BS2, biogas slurry application at two nitrogen rates from BS) was conducted in rice paddy fields. The results showed that long-term BS application had no effect on lignin phenols proportion in SOC relative to CF. In contrast, BS application elevated the MNC contribution to SOC by 15.5-20.5 % compared with the CF treatment. The proportion of fungal necromass C (FNC) to SOC increased by 16.0 % under BS1 and by 25.8 % under BS2 compared with the CF treatment, while no significant difference in bacterial necromass C (BNC) contribution to SOC was observed between the BS and CF treatments. The MNC was more closely correlated with fungal community structures than with bacterial community structures. We further found that fungal genera, Mortierella and Ciliophora, mainly regulated the MNC, FNC and BNC accumulation. Collectively, our results highlighted that fungi play a vital role in SOC storage in paddy soils by regulating MNC formation and accumulation under long-term BS application.


Assuntos
Micobioma , Oryza , Solo/química , Carbono , Biocombustíveis , Lignina , Fertilizantes/análise , Microbiologia do Solo
3.
Sci Total Environ ; 904: 166722, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37678525

RESUMO

Micro/nanoplastics (MPs) are attracting increasing attention owing to the potential threats they pose to the sustainability of the environment and the health of living organisms. Thus, a comprehensive understanding of the influence of MPs on living organisms is vital for developing countermeasures. We conducted an extensive literature search to retrieve the articles related to MPs via the Web of Science. Accordingly, 152 articles published in the last decade and in influential journals were selected to analyze the effects of MPs on plants, animals, microorganisms, and humans as well as the current status, hotspots, and trends of studies on MPs. The results showed that owing to the special characteristics of MPs and anthropogenic activities, MPs have become ubiquitous worldwide. MPs are ingested by plants and animals and enter the human body through various pathways, resulting in numerous adverse effects, such as growth inhibition, oxidative stress, inflammation, organ damage, and germ cell lesions. Moreover, they affect microorganisms by reshaping the structure and function of microbial communities and changing the spread pathway. However, microorganisms can also contribute to the degradation of MPs. With increasing evidence of the adverse effects of MPs on biota, coping with MP pollution and mitigating harmful outcomes have emerged as major challenges. This review focuses on (1) the main effects of MPs on living organisms, ranging from microorganisms to humans, (2) the current status and hotspots of studies related to MPs, and (3) the challenges and prospects of further studies on MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Plásticos , Poluição Ambiental , Poluentes Químicos da Água/análise , Ecossistema
4.
J Environ Manage ; 345: 118687, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517094

RESUMO

Fungicides and nitrogen (N) fertilizers are essential to maintain plant yield in current intensive agriculture. Percarbamide is a novel type of N fertilizer with strong oxidizing property, and the nitrification inhibitor is widely used in agricultural production. It may be feasible to apply percarbamide and nitrification inhibitor as N management to promote fungicide dissipations in soil-plant system. This study quantified the effects of percarbamide and nitrification inhibitor dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate (DMPP) on carbendazim residues, and microbial communities of soil-plant systems, and relationships among carbendazim residues, soil and endophytic microbial communities and plant yields were also comprehensively quantified. Compared with the control, the percarbamide significantly reduced soil carbendazim residues by 29.4% but enhanced the lettuce yield by 28.0%. Soil carbendazim residues were significantly and negatively correlated with the soil total N and NO3--N contents. Soil microbial community structures and co-occurrence networks were more sensitive to N management than their endophytic counterparts. In comparison to the percarbamide alone, the DCD significantly increased the nodes of soil fungal community co-occurrence network which were positively correlated with the plant yield. The DCD outweighed DMPP in increasing the lettuce yield and soil fungal community stability and reshaping soil bacterial community structure. Our study suggested that soil microbial communities were more sensitive to percarbamide and nitrification inhibitor applications than their endophytic counterparts under fungicide pressure and that the DCD outweighed DMPP in reshaping microbial communities. The integrated applications of percarbamide and nitrification inhibitors were promising soil N management strategies to promote fungicide removal and stimulate microbial community in the soil-plant systems.


Assuntos
Fungicidas Industriais , Microbiota , Solo/química , Nitrificação , Fungicidas Industriais/farmacologia , Iodeto de Dimetilfenilpiperazina/farmacologia , Fertilizantes/análise , Microbiologia do Solo , Nitrogênio/química
5.
J Hazard Mater ; 451: 131175, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36913747

RESUMO

Applying nitrogen (N)-cycling inhibitors is an effective measure to improve N fertilizer utilization efficiency, but the effects of N-cycling inhibitors on fungicide residues in soil-crop systems are unclear. In this study, nitrification inhibitors dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate (DMPP) and urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) were applied into agricultural soils with fungicide carbendazim applications. The soil abiotic properties, carrot yields, carbendazim residues, bacterial communities and their comprehensive relationships were also quantified. Compared to the control treatment, the DCD and DMPP significantly decreased soil carbendazim residues by 96.2% and 96.0%, and the DMPP and NBPT significantly reduced carrot carbendazim residues by 74.3% and 60.3%, respectively. The nitrification inhibitor applications also generated significant and positive effects on carrot yields and soil bacterial community diversities. The DCD application significantly stimulated soil Bacteroidota and endophytic Myxococcota and modified soil and endophytic bacterial communities. Meanwhile, the DCD and DMPP applications also positively stimulated the co-occurrence network edges of soil bacterial communities by 32.6% and 35.2%, respectively. The linear correlation coefficients between soil carbendazim residues and pH, ETSA and NH4+-N contents were - 0.84, - 0.57 and - 0.80, respectively. The nitrification inhibitor applications generated win-win effects on the soil-crop systems by decreasing carbendazim residues but promoting soil bacterial community diversities and stabilities and crop yields.


Assuntos
Fungicidas Industriais , Solo , Solo/química , Nitrificação , Fungicidas Industriais/farmacologia , Iodeto de Dimetilfenilpiperazina/farmacologia , Bactérias , Nitrogênio/química , Fertilizantes , Amônia
6.
Environ Sci Pollut Res Int ; 30(1): 1244-1252, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35913693

RESUMO

Kenaf (Hibiscus cannabinus L.) is suitable for growing in heavy metal-polluted soil for non-food purposes and can be used as a potential crop to remediate heavy metal-contaminated soil. The main objective of this study was to investigate kenaf phytoextraction of cadmium (Cd), including uptake, translocation, and accumulation differences in tissues among kenaf cultivars. A field experiment was conducted in a Cd contaminated paddy field in southern China area with 13 kenaf cultivars in 2015 and 2016. Agronomic performance, Cd concentrations in plant tissues (root, xylem, and phloem), and biomass of different tissues of each cultivar were measured and evaluated. Significant differences in Cd concentrations and accumulation among tissues and cultivars were observed. The phloem had the highest Cd accumulation and transfer capability compared with the roots and xylem. Approximately 35 ~ 65 g of Cd could be taken up by the aerial parts of different kenaf cultivars within every hectare of soil. The percentage of Cd uptake by the phloem ranged from 47 to 61% and by the xylem ranged from 38 to 53%. By evaluating the agronomic traits and Cd bioaccumulation capacity, Fuhong 952, Fuhong 992, and Fuhong R1 were regarded as Cd accumulators for the phytoremediation of Cd-contaminated soil. Our study clearly demonstrated that a significant level of Cd in the soil was taken up through the phytoremediation with kenaf. In addition, harmless utilization of kenaf planting in Cd-contaminated paddy soil was discussed.


Assuntos
Hibiscus , Metais Pesados , Poluentes do Solo , Cádmio/análise , Biodegradação Ambiental , Poluentes do Solo/análise , Raízes de Plantas/química , Solo , China
7.
Foods ; 12(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38231648

RESUMO

Multiple varieties of flaxseeds have been identified in the world, yet the relationship between these varieties, their agronomic traits, and their seeds' quality remains unclear. This study aimed to determine the level of lignan, vitamins and carotenoids in 40 selected flaxseed varieties, and the relationship between varieties, agronomic traits, and seed quality was investigated. In this study, notably, fiber flax variety No. 225 exhibited the highest lignan content among all tested seeds. Additionally, oil variety No. 167 demonstrated the highest level of α-tocotrienol (α-T3), ß-tocopherol (ß-T), γ-tocotrienol (γ-T3), and ß-carotene (ß-Car.). Conversely, intermediate flax variety No. 16 displayed the highest content of α-tocopherol (α-T), but lowest content of lutein (Lut.), zeaxanthin (Zea.), ß-carotene (ß-Car.), and total carotenoids (Total Car.). Furthermore, a correlation was observed between petal color with the lignan, while a strong correlation has been explored in seed yield, seed type, plant natural height, and fiber content in straw. Nevertheless, further investigation is required to elucidate the internal relationship between varieties with compositions.

8.
Ecotoxicol Environ Saf ; 246: 114196, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36252514

RESUMO

Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to further evaluate its tolerance, absorption, transfer, and distribution to multiple heavy metals. In the current study, we evaluated the tolerance, absorption, transfer, and distribution of P. glomerata in a Cd/Pb/Cu/Zn combined-contaminated environment by two hydroponic experiments. The results demonstrated that P. glomerata was not affected by Cd/Pb/Cu/Zn exposure, except for the 50 µM Cd/Pb/Cu/Zn treatment, which significantly decreased the stem biomass. In a single Cd, Pb, Cu, and Zn exposure, the root of P. glomerata absorbed Cd/Pb/Cu/Zn in the order of Cd > Zn > Pb > Cu. Almost all Pb and Cu accumulated in the plant roots and were hardly transferred to the aboveground parts. Therefore, the order of total Cd/Pb/Cu/Zn extraction of a single plant in multiple Cd/Pb/Cu/Zn exposures at the same concentration was Cd > Zn > Pb > Cu. The bioconcentration factor (BCF) of Cd and Zn in roots, stems, and leaves increased with the concentration of Cd and Zn in the solution, and was > 1. In contrast with Cd and Zn, the BCFs of Cu and Pb in the stems and leaves were < 1. The element distribution of Pb, Cu, Zn, and Mn in the stem of P. glomerata was dispersed, indicating that the stem of P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity. The total amount of tartaric acid, critic acid, and DOC secreted by P. glomerata roots decreased with the increase in Cd/Pb/Cu/Zn exposure. However, further investigation is needed to unravel the interaction between the LMWOAs secreted by the root of P. glomerata and heavy metals.


Assuntos
Amaranthaceae , Metais Pesados , Poluentes do Solo , Cádmio , Chumbo , Metais Pesados/análise , Biodegradação Ambiental , Zinco , Poluentes do Solo/análise
10.
Pac Symp Biocomput ; : 144-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25592576

RESUMO

Brain tumor is a fatal central nervous system disease that occurs in around 250,000 people each year globally and it is the second cause of cancer in children. It has been widely acknowledged that genetic factor is one of the significant risk factors for brain cancer. Thus, accurate descriptions of the locations of where the relative genes are active and how these genes express are critical for understanding the pathogenesis of brain tumor and for early detection. The Allen Developing Mouse Brain Atlas is a project on gene expression over the course of mouse brain development stages. Utilizing mouse models allows us to use a relatively homogeneous system to reveal the genetic risk factor of brain cancer. In the Allen atlas, about 435,000 high-resolution spatiotemporal in situ hybridization images have been generated for approximately 2,100 genes and currently the expression patterns over specific brain regions are manually annotated by experts, which does not scale with the continuously expanding collection of images. In this paper, we present an efficient computational approach to perform automated gene expression pattern annotation on brain images. First, the gene expression information in the brain images is captured by invariant features extracted from local image patches. Next, we adopt an augmented sparse coding method, called Stochastic Coordinate Coding, to construct high-level representations. Different pooling methods are then applied to generate gene-level features. To discriminate gene expression patterns at specific brain regions, we employ supervised learning methods to build accurate models for both binary-class and multi-class cases. Random undersampling and majority voting strategies are utilized to deal with the inherently imbalanced class distribution within each annotation task in order to further improve predictive performance. In addition, we propose a novel structure-based multi-label classification approach, which makes use of label hierarchy based on brain ontology during model learning. Extensive experiments have been conducted on the atlas and results show that the proposed approach produces higher annotation accuracy than several baseline methods. Our approach is shown to be robust on both binary-class and multi-class tasks and even with a relatively low training ratio. Our results also show that the use of label hierarchy can significantly improve the annotation accuracy at all brain ontology levels.


Assuntos
Encéfalo/metabolismo , Perfilação da Expressão Gênica/estatística & dados numéricos , Anotação de Sequência Molecular/estatística & dados numéricos , Algoritmos , Animais , Encéfalo/embriologia , Neoplasias Encefálicas/genética , Biologia Computacional , Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Modelos Logísticos , Camundongos , Fatores de Risco , Processos Estocásticos , Aprendizado de Máquina Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...