Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Nano Lett ; 24(26): 8126-8133, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904329

RESUMO

While lead sulfide shows notable thermoelectric properties, its production costs remain high, and its mechanical hardness is low, which constrains its commercial viability. Herein, we demonstrate a straightforward and cost-effective method to produce PbS nanocrystals at ambient temperature. By introducing controlled amounts of silver, we achieve p-type conductivity and fine-tune the energy band structure and lattice configuration. Computational results show that silver shifts the Fermi level into the valence band, facilitating band convergence and thereby enhancing the power factor. Besides, excess silver is present as silver sulfide, which effectively diminishes the interface barrier and enhances the Seebeck coefficient. Defects caused by doping, along with dislocations and interfaces, reduce thermal conductivity to 0.49 W m-1 K-1 at 690 K. Moreover, the alterations in crystal structure and chemical composition enhance the PbS mechanical properties. Overall, optimized materials show thermoelectric figures of merit approximately 10-fold higher than that of pristine PbS, alongside an average hardness of 1.08 GPa.

2.
Biochem Biophys Res Commun ; 720: 150118, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776757

RESUMO

Tectorigenin (TEC) as a plant extract has the advantage of low side effects on metabolic dysfunction-associated steatohepatitis (MASH) treatment. Our previous study have shown that tRNA-derived RNA fragments (tRFs) associated with autophagy and pyroptosis in MASH, but whether TEC can mitigate MASH through tRFs-mediated mitophagy is not fully understood. This study aims to investigate whether TEC relies on tRFs to adjust the crosstalk of hepatocyte mitophagy with pyroptosis in MASH. Immunofluorescence results of PINK1 and PRKN with MitoTracker Green-labeled mitochondria verified that TEC enhanced mitophagy. Additionally, TEC inhibited pyroptosis, as reflected by the level of GSDME, NLRP3, IL-1ß, and IL-18 decreased after TEC treatment, while the effect of pyroptosis inhibition by TEC was abrogated by Pink1 silencing. We found that the upregulation expression of tRF-3040b caused by MASH was suppressed by TEC. The promotion of mitophagy and the suppression of pyroptosis induced by TEC were abrogated by tRF-3040b mimics. TEC reduced lipid deposition, inflammation, and pyroptosis, and promoted mitophagy in mice, but tRF-3040b agomir inhibited these effects. In summary, our findings provided that TEC significantly reduced the expression of tRF-3040b to enhance mitophagy, thereby inhibiting pyroptosis in MASH. We elucidated a powerful theoretical basis and provided safe and effective potential drugs for MASH with the prevention and treatment.


Assuntos
Regulação para Baixo , Isoflavonas , Camundongos Endogâmicos C57BL , Mitofagia , Piroptose , Piroptose/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Animais , Camundongos , Masculino , Isoflavonas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/genética , Humanos
3.
Aging (Albany NY) ; 16(5): 4759-4777, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38461449

RESUMO

Activation of hepatic stellate cells (HSCs) is critical in the progression of liver fibrosis and is a promising target for anti-hepatic fibrosis drug development. Moreover, effective pharmacological interventions targeting this pathomechanism are scarce. Our study confirms the therapeutic value of ß-sitosterol, a major constituent of Ranunculus ternatus Thunb, in hepatic fibrosis and identifies its underlying mechanisms. After treatment with ß-sitosterol, CCL4-induced hepatic fibrosis was reversed in mice, while inflammatory and hepatic fibrosis indices were improved. Meanwhile, we explored the molecular mechanism of ß-sitosterol treatment for hepatic fibrosis and, based on RNA-seq results, found that the ameliorative effect of ß-sitosterol on hepatic fibrosis was associated with the MK3 and NF-κB signalling pathways. MK3, an important kinase in the MAPK pathway, plays a role in transmitting upstream and downstream signals, whereas the NF-κB signalling pathway has been shown to be associated with HSC activation. We verified the interaction between MK3 and IκB in HSC cells using endogenous Co-IP, whereas ß-sitosterol reduced the binding of MK3 to IκB and the activation of the NF-κB signalling pathway. Our findings reveal the mechanism of ß-sitosterol in the treatment of liver fibrosis, suggesting that ß-sitosterol may be a promising drug for the treatment of liver fibrosis and deserves further investigation.


Assuntos
NF-kappa B , Ranunculus , Camundongos , Animais , NF-kappa B/metabolismo , Ranunculus/metabolismo , Farmacologia em Rede , Cirrose Hepática/metabolismo , Perfilação da Expressão Gênica , Fígado/metabolismo
4.
Hepatol Int ; 18(3): 1040-1052, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38172440

RESUMO

BACKGROUND: Altered patterns of bile acids (BAs) are frequently present in liver fibrosis, and BAs function as signaling molecules to initiate inflammatory responses. Therefore, this study was conducted to uncover the notably altered components of BAs and to explore the pathway of altered BA induced inflammation in the development of liver fibrosis. METHODS: Bile acids were quantified by ultraperformance liquid chromatography coupled to mass spectrometry (UPLC‒MS/MS). Cell Counting Kit-8 assays were used to determine the proliferative capacity of HSCs. Transwell assays and wound healing assays were used to determine the migratory capacity of LX2 cells. Protein expression was evaluated by western blotting. RESULTS: Plasma bile acid analysis showed higher levels of GCDCA, TCDCA, GCA and TCA in patients with liver fibrosis than in normal controls. The AUC of GCDCA was the highest. Western blotting showed that GCDCA treatment increased the expression of NLRP3-related proteins and collagen1 in vitro and significantly increased LX2 cells proliferation and migration. Furthermore, knockdown of NLRP3 or overexpression of FXR in LX2 cells decreased the expression of the above proteins, and FXR inhibited NLRP3 (ser 295) phosphorylation in vitro and vivo. In vivo, HE, Masson's trichrome, and Sirius Red staining showed that GCDCA increased collagen fibers in the mouse liver, and the expression of NLRP3-related proteins, collagen 1, and α-SMA in the liver increased significantly. However, the knockout of NLRP3 reversed these patterns. CONCLUSION: (1) Primary conjugated bile acids increased in patients with liver fibrosis; (2) GCDCA induce hepatic fibrosis via the NLRP3 inflammasome pathway; (3) FXR inhibits NLRP3 activity by restraining its phosphorylation; (4) knockdown or knockout of NLRP3 may relieve the onset of hepatic fibrosis.


Assuntos
Ácidos e Sais Biliares , Inflamassomos , Cirrose Hepática , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores Citoplasmáticos e Nucleares , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Ácidos e Sais Biliares/metabolismo , Humanos , Animais , Inflamassomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Camundongos , Masculino , Transdução de Sinais , Proliferação de Células/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Feminino , Linhagem Celular
5.
Dig Dis Sci ; 68(11): 4186-4195, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37679574

RESUMO

BACKGROUND: Hepatic stellate cell hyperactivation is a central link in liver fibrosis development, transforming growth factor ß1 (TGF-ß1) is a key activator of HSCs. AIMS: This study investigated whether anlotinib attenuates CCl4 induced liver fibrosis in mice and explored its antifibrotic mechanism. METHODS: We used the human hepatic stellate cell line LX-2 for in vitro assays and used TGF-ß1 to induce hepatic fibrosis in LX-2 cells. We analyzed cytotoxicity using a cell-counting kit-8 and transwell chambers to detect the migratory ability of LX-2 cells. Western blotting was used to detect the protein levels of collagen type I, α-smooth muscle actin, and p-Smad3. In addition, mice with CCl4-induced hepatic fibrosis were used as in vivo models. Histopathological examination was performed using H&E staining, Masson's trichrome staining, and immunohistochemistry. RESULTS: Anlotinib significantly reversed TGF-ß1-induced protein levels of Col I, α-SMA and p-Smad3 and inhibits migratory and proliferative abilities in vitro using LX-2 cells. CCl4 cause F4 grade (Ishak) hepatic fibrosis, liver inflammatory scores ranged from 12 to 14 (Ishak), a mean ALT measurement of 130 U/L and a mean measurement AST value of 119 U/L in mice. However, the CCl4-induced changes were markedly attenuated by anlotinib treatment, which returned to F2 grade (Ishak) hepatic fibrosis, liver inflammatory scores ranged from 4 to 6 (Ishak), a mean ALT measurement of 40 U/L and a mean measurement AST value of 56 U/L in mice. CONCLUSIONS: Our results suggest that anlotinib-mediated suppression of liver fibrosis is related to the inhibition of TGF-ß1 signaling pathway. Hepatic stellate cell hyper activation is a central link in liver fibrosis development, transforming growth factor ß1 is a key activator of HSCs. Anlotinib is a multi-targeted tyrosine kinase inhibitor that has similar targets to nintedanib, a clinically used anti-pulmonary fibrosis drug. Our study demonstrates an FDA-approved drug-anlotinib-that could prevent liver fibrosis and inflammation. Experiments in cell cultures and mice show that anlotinib can inhibit the activation of hepatic stellate cells by down-regulating the TGFß1/smad3 pathway, thereby reversing liver fibrosis. In animal experiments, anlotinib showed protective effects on the CCl4-induced liver damage, including ameliorating liver inflammation, reversing liver fibrosis and reducing liver enzymes. This is a very good signal, anlotinib may be useful for halting or reversing the progression of liver fibrosis and could be employed in the development of novel therapeutic drugs for the management of chronic liver diseases.

6.
Nanomaterials (Basel) ; 13(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446453

RESUMO

Environmental heat-to-electric energy conversion presents a promising solution for powering sensors in wearable and portable devices. However, the availability of near-room temperature thermoelectric (TE) materials is highly limited, posing a significant challenge in this field. Bi2Se3, as a room-temperature TE material, has attracted much attention. Here, we demonstrate a large-scale synthesis of Bi2Se3 nanoflakes used for the microflexible TE generator. A high-performance micro-TE generator module, utilizing a flexible printed circuit, has been designed and fabricated through the process of screen printing. The TE generator configuration comprises five pairs of PN TE legs. The p-type TE leg utilizes commercially available Sb2Te3 powder, while the n-type TE leg employs Bi2Se3 nanoflakes synthesized in this study. For comparative purposes, we also incorporate commercially available Bi2Se3 powder as an alternative n-type TE leg. The optimal performance of the single-layer microflexible TE generator, employing Bi2Se3 nanoflakes as the active material, is achieved when operating at a temperature differential of 109.5 K, the open-circuit voltage (VOC) is 0.11 V, the short circuit current (ISC) is 0.34 mA, and the maximum output power (PMAX) is 9.5 µW, much higher than the generator consisting of commercial Bi2Se3 powder, which is expected to provide an energy supply for flexible electronic devices.

7.
Biochem Pharmacol ; 213: 115615, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211171

RESUMO

Transport and Golgi organization 1 (TANGO1) also known as MIA3, belongs to the melanoma inhibitory activity gene (MIA) family together with MIA, MIA2 and OTOR; these members play different roles in different tumors, but the mechanism underlying TANGO1s effect on hepatocellular carcinoma (HCC) is unclear. Our study confirmed that TANGO1 is a promoter of HCC, In HCC cells, TANGO1 can promote proliferation, inhibit apoptosis, promote EMT. These changes were reversed after TANGO1 inhibition. We explored the molecular mechanism of TANGO1 and HCC and found that the promoting effect of TANGO1 on HCC related to neurturin (NRTN) and the PI3K/AKT/mTOR signaling pathway based on RNA-seq results. NRTN is not only related to neuronal growth, differentiation and maintenance but is also involved in a variety of tumorigenic processes, and PI3K/AKT/mTOR signaling pathway has been shown to be involved in HCC progression. We verified that TANGO1 interacts with NRTN in HCC cells using endogenous Co-IP and confocal localization, and both promote HCC progression by activating the PI3K/AKT/mTOR signaling pathway. Our results reveal the mechanism by which TANGO1 promotes HCC progression, suggesting that the TANGO1/NRTN axis may be a potential therapeutic target for HCC worthy of further investigation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas/metabolismo , Neurturina , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
8.
Interdiscip Sci ; 15(3): 480-498, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37248421

RESUMO

Precise forecasting of survival risk plays a pivotal role in comprehending and predicting the prognosis of patients afflicted with esophageal squamous cell carcinoma (ESCC). The existing methods have the problems of insufficient fitting ability and poor interpretability. To address this issue, this work proposes a novel interpretable survival risk prediction method for ESCC patients based on extreme gradient boosting improved by whale optimization algorithm (WOA-XGBoost) and shapley additive explanations (SHAP). Given the imbalanced nature of the data set, the adaptive synthetic sampling (ADASYN) is first used to generate the samples with high survival risk. Then, an improved clustering by fast search and find of density peaks (IDPC) algorithm based on cosine distance and K nearest neighbors is used to cluster the patients. Next, the prediction model for each cluster is obtained by WOA-XGBoost and the constructed model is visualized with SHAP to uncover the factors hidden in the structured model and improve the interpretability of the black-box model. Finally, the effectiveness of the proposed scheme is demonstrated by analyzing the data collected from the First Affiliated Hospital of Zhengzhou University. The results of the analysis reveal that the proposed methodology exhibits superior performance, as indicated by the area under the receiver operating characteristic curve (AUROC) of 0.918 and accuracy of 0.881.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Algoritmos , Análise por Conglomerados , Aprendizado de Máquina
9.
J Oncol ; 2023: 3801526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36660245

RESUMO

TP53 is a well-known tumor suppressor gene and one of the most common genetic alterations in human cancers. However, the role of p53 as a prognostic marker of esophageal squamous cell carcinoma (ESCC) is controversial in the association between TP53 alterations and clinical outcomes. To address this issue, we evaluated TP53 mutations, p53 protein expression, clinicopathological parameters, and survivals rates in a large scale of patients with ESCC. Two cohorts were included in this study: TP53 mutations were detected by next-generation sequencing in 316 ESCC patients, and p53 protein expression was tested by immunohistochemistry in 6,028 ESCC patients. Survival analysis was performed using the Kaplan-Meier curve and the Cox proportional hazards model. TP53 mutations were found in ESCC patients from 241 of 316 (76.3%), and the rate of positive expression of p53 protein was 59.1% in 6,028 ESCC patients (including 1819 with high expression of p53 protein), respectively. Most mutations were missense, which has a high expression of p53 protein. Compared with wild-typeTP53, TP53 gene mutations were not significantly associated with survival time (p=0.083). In multivariate analysis, the p53 protein expression was an independent prognostic factor for ESCC. The high-expression group of p53 protein has poor survival (p < 0.001) compared to low-expression group in patients with ESCC. The high expression of the p53 protein, not the TP53 mutation, is predictive of poor survival in patients with ESCC, and p53 protein expression might have the potential to be a prognosis biomarker and therapy target in ESCC.

10.
Ann Transl Med ; 10(22): 1223, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36544689

RESUMO

Background: Chronic exposure to airborne microparticles has been shown to increase the incidence of several chronic diseases. Previous studies have found that waterfall forest aerosols contribute to a diminished immune stress response in patients with asthma. However, the specific effects of short-term waterfall forest aerosol exposure on lung proteins have not been fully elucidated. Methods: This study used liquid chromatography-tandem mass spectrometry (LC-MS) to analyze changes in protein expression in the lungs of rats exposed to short-term waterfall forest aerosol environments. Specific protein markers were identified using bioconductivity analysis screening and validated using immunohistochemistry. Results: Waterfall forest aerosol environment exposure on day 5 downregulated the expression of the classical inflammatory pathway nuclear factor κB (NF-κB) signaling pathway. As the waterfall forest aerosol environment increased due to the duration of exposure, it was involved in oxidative phosphorylation and then hormone signaling in lung cells from the very beginning. In contrast, at day 15 of exposure, there is an effect on the regulation of the immune-related high-affinity IgE receptor pathway. In addition, iron-sulfur Rieske protein (Uqcrfs1), mitochondrial Tu translation elongation factor (Tufm) and ribosomal protein L4 (Rpl4) were identified as possible bioindicators for the evaluation of air quality. Conclusions: These results provide a comprehensive proteomic analysis that supports the positive contribution of a good air quality environment to lung health.

11.
J Clin Transl Hepatol ; 10(6): 1125-1137, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36381108

RESUMO

Background and Aims: Krüppel-like factor (KLF) has a role in the occurrence, development and metabolism of cancer. We aimed to explore the role and potential molecular mechanism of KLF13 in the growth and migration of liver cancer cells. Methods: The expression of KLF13 in hepatocellular carcinoma (HCC) tissues was higher than that in normal tissues according to analysis of The Cancer Genome Atlas (TCGA) database. Lentiviral plasmids were used for overexpression and plasmid knockdown of KLF13. Real-time quantitative polymerase chain reaction (qPCR) and western blotting were used to detect mRNA and protein expression in HCC tissues and cells. Cell counting kit-8 (CCK-8), colony formation, cell migration and invasion, and flow cytometry assays were used to assess the in vitro function of KLF13 in HCC cells. The effect of KLF13 on xenograft tumor growth in vivo was evaluated. The cholesterol content of HCC cells was determined by an indicator kit. A dual-luciferase reporter assay and chromatin immunoprecipitation sequencing (ChIP-seq) revealed the binding relationship between KLF13 and HMGCS1. Results: The expression of KLF13 was upregulated in HCC tissues and TCGA database. KLF13 knockdown inhibited the proliferation, migration and invasion of HepG2 and Huh7 cells and increased the apoptosis of Huh7 cells. The opposite effects were observed with the overexpression of KLF13 in SK-Hep1 and MHCC-97H cells. The overexpression of KLF13 promoted the growth of HCC in nude mice and KLF13 transcription promoted the expression of HMGCS1 and the biosynthesis of cholesterol. KLF13 knockdown inhibited cholesterol biosynthesis mediated by HMGCS1 and inhibited the growth and metastasis of HCC cells. Conclusions: KLF13 acted as a tumor promoter in HCC by positively regulating HMGCS1-mediated cholesterol biosynthesis.

12.
Am J Transl Res ; 14(10): 6856-6873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36398226

RESUMO

OBJECTIVE: To explore the role of endothelial progenitor cell (EPC)-derived exosomal microRNA-382-3p (miR-382-3p) in septic injury in mice. METHODS: A murine model of sepsis was introduced by cecal ligation and puncture (CLP). The model mice were treated with EPC-derived exosomes (Exos). The lung, kidney and liver tissues of mice were collected and stained with hematoxylin and eosin. The lymphocytes in murine spleen tissues, and the proportion and phenotype of the T helper cells (Ths) were examined by flow cytometry. The exosomal miRNAs were screened using a microarray analysis. The expressions of miR-382-3p and beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) were measured to explore possible mechanism of Exos in septic injury in mice. RESULTS: EPC-derived Exos alleviated CLP-induced tissue damage in the lung, kidney and liver tissues in septic mice. They also restored the number of lymphocytes and the concentration of Ths, and reduced the imbalance in Th1 and Th2 cells in mice. The Exos mainly contained miR-382-3p, and miR-382-3p directly targeted BTRC mRNA. Either downregulation of miR-382-3p or upregulation of BTRC blocked the protective roles of Exos in septic injury and immune suppression. Overexpression of BTRC increased the phosphorylation of nuclear factor kappa B (NF-κB) inhibitor α (IκBα) and NF-κB. CONCLUSION: EPC-derived exosomal miR-382-3p alleviates sepsis-induced organ damage and immune suppression in septic mice through regulating BTRC and the IκBα/NF-κB axis.

13.
Comput Intell Neurosci ; 2022: 1036913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203733

RESUMO

Deep neural network is a complex pattern recognition network system. It is widely favored by scholars for its strong nonlinear fitting ability. However, training deep neural network models on small datasets typically realizes worse performance than shallow neural network. In this study, a strategy to improve the sparrow search algorithm based on the iterative map, iterative perturbation, and Gaussian mutation is developed. This optimized strategy improved the sparrow search algorithm validated by fourteen benchmark functions, and the algorithm has the best search accuracy and the fastest convergence speed. An algorithm based on the iterative map, iterative perturbation, and Gaussian mutation improved sparrow search algorithm is designed to optimize deep neural networks. The modified sparrow algorithm is exploited to search for the optimal connection weights of deep neural network. This algorithm is implemented for the esophageal cancer dataset along with the other six algorithms. The proposed model is able to achieve 0.92 under all the eight scoring criteria, which is better than the performance of the other six algorithms. Therefore, an optimized deep neural network based on an improved sparrow search algorithm with iterative map, iterative perturbation, and Gaussian mutation is an effective approach to predict the survival rate of esophageal cancer.


Assuntos
Neoplasias Esofágicas , Redes Neurais de Computação , Algoritmos , Neoplasias Esofágicas/genética , Humanos , Reconhecimento Automatizado de Padrão
14.
World J Gastrointest Oncol ; 14(9): 1739-1757, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36187400

RESUMO

BACKGROUND: Primary malignant melanoma of the esophagus (PMME) is a rare malignant disease and has not been well characterized in terms of clinicopathology and survival. AIM: To investigate the clinical features and survival factors in Chinese patients with PMME. METHODS: The clinicopathological findings of ten cases with PMME treated at Henan Provincial People's Hospital were summarized. Moreover, the English- and Chinese-language literature that focused on Chinese patients with PMME from 1980 to September 2021 was reviewed and analyzed. Univariate and multivariate analyses were employed to investigate the clinicopathologic factors that might be associated with survival. RESULTS: A total of 290 Chinese patients with PMME, including ten from our hospital and 280 from the literature were enrolled in the present study. Only about half of the patients (55.8%) were accurately diagnosed before surgery. Additionally, 91.1% of the patients received esophagectomy, and 88 patients (36.5%) received adjuvant therapy after surgery. The frequency of lymph node metastasis (LNM) was 51.2% (107/209), and LNM had a positive rate of 45.3% even when the tumor was confined to the submucosal layer. The risk of LNM increased significantly with the pT stage [P < 0.001, odds ratio (OR): 2.47, 95% confidence interval (CI): 1.72-3.56] and larger tumor size (P = 0.006, OR: 1.21, 95%CI: 1.05-1.38). The median overall survival (OS) was 11.0 mo (range: 1-204 mo). The multivariate Cox analysis showed both the pT stage [P = 0.005, hazard ratio (HR): 1.70, 95%CI: 1.17-2.47] and LNM (P = 0.009, HR: 1.78, 95%CI: 1.15-2.74) were independent prognostic factors for OS. The median disease-free survival (DFS) was 5.3 mo (range: 0.8-114.1 mo). The multivariate analysis indicated that only the advanced pT stage (P = 0.02, HR: 1.93, 95%CI: 1.09-3.42) was a significant independent indicator of poor RFS in patients with PMME. CONCLUSION: The correct diagnosis of PMME before surgery is low, and physicians should pay more attention to avoid a misdiagnosis or missed diagnosis. Extended lymph node dissection should be emphasized in surgery for PMME even though the tumor is confined to the submucosal layer. Both the LNM and pT stage are independent prognosis factors for OS, and the pT stage is the prognosis factor for DFS in patients with PMME.

15.
Ann Transl Med ; 10(16): 894, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36110995

RESUMO

Background: The aim of this study was to investigate the specific mechanisms underlying the human health-promoting effects of the forest environment at Huangguoshu Falls, Guizhou, China. Methods: Ninety-five participants were recruited and an eye tracker was used to record fixation and sweep indices. A questionnaire was also used to evaluate the effects of different subject environments on human emotions, perceived recovery and preferences. Thereafter, 24 participants with chronic fatigue syndrome (CFS) were recruited and the participants' fatigue and stress-related scale indices and inflammatory factor levels were examined. Serum metabolites of the participants under different time waterfall forest interventions were detected by ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q/TOF-MS). Results: Eye tracking paradigm analysis showed that the "waterfall" element was the most interesting element for participants and that the "charm" of the waterfall forest environment could be well perceived by participants. Scores on the Fatigue Scale, Anxiety Scale and Depression Scale decreased as the duration of treatment in the waterfall forest environment increased. Levels of inflammatory factors decreased after treatment in the waterfall forest environment. At the same time the level of antioxidants, represented by L-ascorbic acid, increased significantly. Conclusions: The charm of the Huangguoshu waterfall scenery could be perceived by the participants and have a positive modulating effect on mood and cognitive function. In addition, the unique mixture of negative oxygen ions in this environment can increase the content of endogenous antioxidants and balance the metabolism of choline and amino acids.

16.
Nutr Metab (Lond) ; 19(1): 57, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999582

RESUMO

BACKGROUND: Altered lipid profiles are frequently present in cancer, and it is necessary to elucidate the role of changed lipid profiles in hepatocellular carcinoma (HCC). We conducted this study to investigate the changed lipid profile in HCC tissues and discover some remarkably changed lipid components, and to explore the function of changed lipid components in HCC development. METHODS: Gas chromatography/mass spectrometer (GC/MS analysis) was employed to measure the abundance of fatty acids between HCC tissues and adjacent noncancerous tissues. The proliferative ability of HCC cells was determined by Cell Counting Kit-8 and EdU assays. Transwell and wound healing assays were employed to determine the migratory ability of HCC cells. Protein expression was assessed by western blot assay. RESULTS: GC/MS analysis revealed that alpha-linolenic acid was present at lower levels in HCC tissues than that in the adjacent noncancerous tissues. Alpha-linolenic acid inhibited the proliferation, migration and invasion of HCC cells in vitro. Western blotting showed that alpha-linolenic acid treatment increased Farnesoid X receptor expression and decreased ß-catenin and cyclinD1 expression. CONCLUSIONS: Alpha-linolenic acid suppresses HCC progression through the FXR/Wnt/ß-catenin signaling pathway. Rational use of alpha-linolenic acid may prevent the occurrence of liver cancer in the future.

17.
Comput Math Methods Med ; 2022: 1924906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844460

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the highest incidence and mortality cancers in the world. An effective survival prediction model can improve the quality of patients' survival. Therefore, a parameter-optimized deep belief network based on the improved Archimedes optimization algorithm is proposed in this paper for the survival prediction of patients with ESCC. Firstly, a combination of features significantly associated with the survival of patients is found by the minimum redundancy and maximum relevancy (MRMR) algorithm. Secondly, a DBN network is introduced to make predictions for survival of patients. Aiming at the problem that the deep belief network model is affected by parameters in the construction process, this paper uses the Archimedes optimization algorithm to optimize the learning rate α and batch size ß of DBN. In order to overcome the problem that AOA is prone to fall into local optimum and low search accuracy, an improved Archimedes optimization algorithm (IAOA) is proposed. On this basis, a survival prediction model for patients with ESCC is constructed. Finally, accuracy comparison tests are carried out on IAOA-DBN, AOA-DBN, SSA-DBN, PSO-DBN, BES-DBN, IAOA-SVM, and IAOA-BPNN models. The results show that the IAOA-DBN model can effectively predict the five-year survival rate of patients and provide a reference for the clinical judgment of patients with ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Algoritmos , Humanos
18.
Comput Intell Neurosci ; 2022: 3895590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845893

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the highest incidence and mortality cancers in the world. An effective survival prediction model can improve the quality of patients' survival. In this study, ten indicators related to the survival of patients with ESCC are founded using genetic algorithm feature selection. The prognostic index (PI) for ESCC is established using the binary logistic regression. PI is divided into four stages, and each stage can reasonably reflect the survival status of different patients. By plotting the ROC curve, the critical threshold of patients' age could be found, and patients are divided into the high-age groups and the low-age groups. PI and ten survival-related indicators are used as independent variables, based on the bald eagle search (BES) and least-squares support vector machine (LSSVM), and a survival prediction model for patients with ESCC is established. The results show that five-year survival rates of patients are well predicted by the bald eagle search-least-squares support vector machine (BES-LSSVM). BES-LSSVM has higher prediction accuracy than the existing particle swarm optimization-least-squares support vector machine (PSO-LSSVM), grasshopper optimization algorithm-least-squares support vector machine (GOA-LSSVM), differential evolution-least-squares support vector machine (DE-LSSVM), sparrow search algorithm-least-squares support vector machine (SSA-LSSVM), bald eagle search-back propagation neural network (BES-BPNN), and bald eagle search-extreme learning machine (BES-ELM).


Assuntos
Águias , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ácidos Alcanossulfônicos , Animais , Humanos , Máquina de Vetores de Suporte
19.
World J Gastroenterol ; 28(13): 1347-1361, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35645543

RESUMO

BACKGROUND: In China, it has been well recognized that some female patients with esophageal squamous cell carcinoma (ESCC) have different overall survival (OS) time, even with the same tumor-node-metastasis (TNM) stage, challenging the prognostic value of the TNM system alone. An effective predictive model is needed to accurately evaluate the prognosis of female ESCC patients. AIM: To construct a novel prognostic model with clinical and reproductive data for Chinese female patients with ESCC, and to assess the incremental prognostic value of the full model compared with the clinical model and TNM stage. METHODS: A new prognostic nomogram incorporating clinical and reproductive features was constructed based on univariatie and Cox proportional hazards survival analysis from a training cohort (n = 175). The results were recognized using the internal (n = 111) and independent external (n = 85) validation cohorts. The capability of the clinical-reproductive model was evaluated by Harrell's concordance index (C-index), Kaplan-Meier curve, time-dependent receiver operating characteristic (ROC), calibration curve and decision curve analysis. The correlations between estrogen response and immune-related pathways and some gene markers of immune cells were analyzed using the TIMER 2.0 database. RESULTS: A clinical-reproductive model including incidence area, age, tumor differentiation, lymph node metastasis (N) stage, estrogen receptor alpha (ESR1) and beta (ESR2) expression, menopausal age, and pregnancy number was constructed to predict OS in female ESCC patients. Compared to the clinical model and TNM stage, the time-dependent ROC and C-index of the clinical-reproductive model showed a good discriminative ability for predicting 1-, 3-, and 5-years OS in the primary training, internal and external validation sets. Based on the optimal cut-off value of total prognostic scores, patients were classified into high- and low-risk groups with significantly different OS. The estrogen response was significantly associated with p53 and apoptosis pathways in esophageal cancer. CONCLUSION: The clinical-reproductive prognostic nomogram has an incremental prognostic value compared with the clinical model and TNM stage in predicting OS in Chinese female ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Estrogênios , Feminino , Humanos , Estadiamento de Neoplasias , Prognóstico
20.
Aging (Albany NY) ; 14(9): 3989-3999, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35537781

RESUMO

While genetic alterations in several regulators of the cell cycle have a significant impact on the gastric carcinogenesis process, the prognostic role of them remains to be further elucidated. The TCGA-STAD training set were downloaded and the mRNA expression matrix of cell cycle genes was extracted and corrected for further analysis after taking the intersection with GSE84437 dataset. Differentially expressed mRNAs were identified between tumor and normal tissue samples in TCGA-STAD. Univariate Cox regression analysis and lasso Cox regression model established a novel seven-gene cell cycle signature (including GADD45B, TFDP1, CDC6, CDC25A, CDC7, SMC1A and MCM3) for GC prognosis prediction. Patients in the high-risk group shown significantly poorer survival than patients in the low-risk group. The signature was found to be an independent prognostic factor for GC survival. Nomogram including the signature shown some clinical net benefit for overall survival prediction. The signature was further validated in the GSE84437 dataset. In tissue microarray, CDC6 and MCM3 protein expression were significant differences by the immunohistochemistry-based H-score between tumor tissues and adjacent tissues, and CDC6 is an independent prognostic factor for GC. Interestingly, our GSEA revealed that low-risk patients were more related to cell cycle pathways and might benefit more from therapies targeting cell cycle. Our study identified a novel robust seven-gene cell cycle signature for GC prognosis prediction that may serve as a beneficial complement to clinicopathological staging. The signature might provide potential biomarkers for the application of cell cycle regulators to therapies and treatment response prediction.


Assuntos
Proteínas de Ciclo Celular , Neoplasias Gástricas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Humanos , Nomogramas , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...