Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Metabolites ; 13(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36837842

RESUMO

Barley bran has potential bioactivities due to its high content of polyphenols and dietary fiber, etc. Fermentation has been considered as an effective way to promote the functional activity of food raw materials. In this study, polysaccharides from barley bran extract fermented by Lactiplantibacillus plantarum dy-1 (FBBE-PS) were analyzed, and its effects on lipid accumulation and oxidative stress in high-fat HepG2 cells induced by sodium oleate were evaluated. The results showed that the molecular weight decreased and monosaccharide composition of polysaccharides changed significantly after fermentation. In addition, 50 µg/mL FBBE-PS could reduce the triglyceride (TG) content and reaction oxygen species (ROS) level in high-fat HepG2 cells by 21.62% and 30.01%, respectively, while increasing the activities of superoxide dismutase (SOD) and catalase (CAT) represented by 64.87% and 22.93%, respectively. RT-qPCR analysis revealed that FBBE-PS could up-regulate the lipid metabolism-related genes such as ppar-α, acox-1 and cpt-1α, and oxidation-related genes such as nrf2, ho-1, nqo-1, sod1, cat, etc. The metabolomics analysis indicated that FBBE-PS could alleviate lipid deposition by inhibiting the biosynthesis of unsaturated fatty acids, which is consistent with the downregulation of scd-1 expression. It is demonstrated that fermentation can alter the properties and physiological activities of polysaccharides in barley bran, and FBBE-PS exhibited an alleviating effect on lipid deposition and oxidative stress in high-fat cells.

3.
Bioresour Bioprocess ; 10(1): 12, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38647584

RESUMO

The effect of fermentation by Saccharomyces cerevisiae on biological properties of cinnamon (Cinnamomum cassia) was investigated. The study demonstrated that the extract of S. cerevisiae-fermented cinnamon (S.C.FC) has antioxidants higher than non-fermented one. The optimum results for antioxidant yield were noted with 107 CFU S. cerevisiae/10 g cinnamon and 70 mL of dH2O at pH 6 and incubated for 3 d at 35 °C. Under optimum conditions, ABTS, DPPH, and H2O2 radical-scavenging activity increased by 43.8, 61.5, and 71.9%, respectively. Additionally, the total phenols and flavonoids in S.C.FC were increased by 81.3 and 415% compared by non-fermented one. The fermented cinnamon had antimicrobial activity against L. monocytogenes, S. aureus, E. coli, S. typhi, and C. albicans. Also, the anti-inflammatory properties were increased from 89 to 92% after fermentation. The lyophilized extract of S.C.FC showed positive effect against Huh7 cancer cells which decreased by 31% at the concentration of 700 µg/mL. According to HPLC analysis, p-hydroxybenzoic acid, gentisic acid, catechin, chlorogenic acid, caffeic acid, and syringic acid were increased by 116, 33.2, 59.6, 50.6, 1.6, and 16.9%, respectively. Our findings suggest the applicability of cinnamon fermentation using S. cerevisiae as a useful tool for processing functional foods to increase their antioxidant and anti-inflammatory content.

4.
Biotechnol Rep (Amst) ; 36: e00768, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36245696

RESUMO

This study designed to investigate effect of fermentation by Lactobacillus plantarum on antioxidant and anticancer properties of Cinnamomum cassia aqueous solution. The optimum condition to produce high antioxidant activity was 107 CFU L. plantarum/10 g cinnamon at pH6 after 3 days of incubation at 35 °C. Fermented cinnamon showed an increase in ABTS, DPPH and H2O2 by 24.63, 58.31 and 60.27%, respectively over the control. Also, the total phenolic and flavonoid contents were increased, 8.15 to 11.40 mg GAE/g and 0.43 to 2.61 mg QE/g, respectively. The gallic acid, p-hydroxybenzoic acid, catechin and chlorogenic acid were increased by 37, 404, 11 and 98%, respectively. Also, anticancer activity was developed after fermentation. The increased antioxidant activity of fermented cinnamon could be attributed to the increase of some phenolics and flavonoids. Hence, cinnamon fermentation using L. plantarum is able to enhance its antioxidant and anticancer activities without producing toxic substances.

5.
Antioxidants (Basel) ; 10(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34943107

RESUMO

This review reports on the effects of fermentation on the chemical constituents and antioxidant activity of plant-based food materials. Fermentation involves a series of reactions that modify the chemical components of the substrate. It could be considered a tool to increase the bioactive compounds and functional properties of food plant materials. Oxidative damage is key to the progression of many human diseases, and the production of antioxidant compounds by fermentation will be helpful to reduce the risk of these diseases. Fermentation also can improve antioxidant activity given its association with increased phytochemicals, antioxidant polysaccharides, and antioxidant peptides produced by microbial hydrolysis or biotransformation. Additionally, fermentation can encourage the breakdown of plant cell walls, which helps to liberate or produce various antioxidant compounds. Overall, results indicated that fermentation in many cases contributed to enhancing antioxidants' content and antioxidant capacity, supporting the fermentation use in the production of value-added functional food. This review provides an overview of the factors that impact the effects of fermentation on bioactive compound composition and antioxidant activity. The impacts of fermentation are summarized as a reference to its effects on food plant material.

7.
Neural Regen Res ; 10(3): 490-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25878601

RESUMO

We speculate that cortical reactions evoked by swallowing activity may be abnormal in patients with central infarction with dysphagia. The present study aimed to detect functional imaging features of cerebral cortex in central dysphagia patients by using blood oxygen level-dependent functional magnetic resonance imaging techniques. The results showed that when normal controls swallowed, primary motor cortex (BA4), insula (BA13), premotor cortex (BA6/8), supramarginal gyrus (BA40), and anterior cingulate cortex (BA24/32) were activated, and that the size of the activated areas were larger in the left hemisphere compared with the right. In recurrent cerebral infarction patients with central dysphagia, BA4, BA13, BA40 and BA6/8 areas were activated, while the degree of activation in BA24/32 was decreased. Additionally, more areas were activated, including posterior cingulate cortex (BA23/31), visual association cortex (BA18/19), primary auditory cortex (BA41) and parahippocampal cortex (BA36). Somatosensory association cortex (BA7) and left cerebellum in patients with recurrent cerebral infarction with central dysphagia were also activated. Experimental findings suggest that the cerebral cortex has obvious hemisphere lateralization in response to swallowing, and patients with recurrent cerebral infarction with central dysphagia show compensatory recombination phenomena of neurological functions. In rehabilitative treatment, using the favorite food of patients can stimulate swallowing through visual, auditory, and other nerve conduction pathways, thus promoting compensatory recombination of the central cortex functions.

8.
Food Chem Toxicol ; 74: 20-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25194626

RESUMO

The transgenic rice line (TRS) enriched with amylose and resistant starch (RS) was developed by antisense RNA inhibition of starch-branching enzymes. Cereal starch with high amylose has a great benefit on human health through its resistant starch. In order to evaluate the effect of transgenic rice on rats, the rats were fed diets containing 70% TRS rice flour, its near-isogenic rice flour or the standard diet as the control through three generations. In the present study, clinical performance, reproductive capacity and pathological responses including body weight, food consumption, reproductive data, hematological parameters, serum chemistry components, organ relative weights and histopathology were examined. Some statistically significant differences were observed in rats consuming the high amylose rice diet when compared to rats fed the near-isogenic control rice diet or the conventional (non-rice) standard diet. These differences were generally of small magnitude, appeared to be random in nature, and were within normal limits for the strain of rat used, and were therefore not considered to be biologically meaningful or treatment related.


Assuntos
Amilose/metabolismo , Oryza , Reprodução/efeitos dos fármacos , Amilose/análise , Animais , Peso Corporal/efeitos dos fármacos , Dieta , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Alimentos Fortificados/efeitos adversos , Alimentos Fortificados/análise , Masculino , Oryza/efeitos adversos , Oryza/química , Oryza/genética , Ovário/efeitos dos fármacos , Ovário/patologia , Plantas Geneticamente Modificadas/efeitos adversos , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Ratos Sprague-Dawley , Testículo/efeitos dos fármacos , Testículo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...